{"title":"计算Eilenberg-Moore谱序列的新Kenzo模","authors":"A. Romero, J. Rubio, F. Sergeraert, Markus Szymik","doi":"10.1145/3427218.3427225","DOIUrl":null,"url":null,"abstract":"In this work we present a new module for the computer algebraic topology system Kenzo computing the Eilenberg-Moore spectral sequence of fibrations between spaces with effective homology. These programs can be applied to determine the Eilenberg-Moore spectral sequence of extensions of finitely generated abelian groups.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"54 1","pages":"57 - 60"},"PeriodicalIF":0.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3427218.3427225","citationCount":"2","resultStr":"{\"title\":\"A new Kenzo module for computing the Eilenberg-Moore spectral sequence\",\"authors\":\"A. Romero, J. Rubio, F. Sergeraert, Markus Szymik\",\"doi\":\"10.1145/3427218.3427225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a new module for the computer algebraic topology system Kenzo computing the Eilenberg-Moore spectral sequence of fibrations between spaces with effective homology. These programs can be applied to determine the Eilenberg-Moore spectral sequence of extensions of finitely generated abelian groups.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"54 1\",\"pages\":\"57 - 60\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3427218.3427225\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3427218.3427225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3427218.3427225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new Kenzo module for computing the Eilenberg-Moore spectral sequence
In this work we present a new module for the computer algebraic topology system Kenzo computing the Eilenberg-Moore spectral sequence of fibrations between spaces with effective homology. These programs can be applied to determine the Eilenberg-Moore spectral sequence of extensions of finitely generated abelian groups.