{"title":"热-电-粘弹性法向柔度摩擦接触问题的变分与数值分析","authors":"M. Bouallala, E. Essoufi, M. Alaoui","doi":"10.1155/2019/6972742","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a mathematical model of a contact problem in thermo-electro-viscoelasticity with the normal compliance conditions and Tresca’s friction law. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution. We also study the numerical approach using spatially semidiscrete and fully discrete finite element schemes with Euler’s backward scheme. Finally, we derive error estimates on the approximate solutions.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6972742","citationCount":"4","resultStr":"{\"title\":\"Variational and Numerical Analysis for Frictional Contact Problem with Normal Compliance in Thermo-Electro-Viscoelasticity\",\"authors\":\"M. Bouallala, E. Essoufi, M. Alaoui\",\"doi\":\"10.1155/2019/6972742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a mathematical model of a contact problem in thermo-electro-viscoelasticity with the normal compliance conditions and Tresca’s friction law. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution. We also study the numerical approach using spatially semidiscrete and fully discrete finite element schemes with Euler’s backward scheme. Finally, we derive error estimates on the approximate solutions.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/6972742\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/6972742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6972742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Variational and Numerical Analysis for Frictional Contact Problem with Normal Compliance in Thermo-Electro-Viscoelasticity
In this paper, we consider a mathematical model of a contact problem in thermo-electro-viscoelasticity with the normal compliance conditions and Tresca’s friction law. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution. We also study the numerical approach using spatially semidiscrete and fully discrete finite element schemes with Euler’s backward scheme. Finally, we derive error estimates on the approximate solutions.