基于运动轨迹的水面航行器有限时间控制

IF 0.7 4区 工程技术 Q4 ENGINEERING, MARINE
H. Chen, H. Ren, B. Yang, J. Chen
{"title":"基于运动轨迹的水面航行器有限时间控制","authors":"H. Chen, H. Ren, B. Yang, J. Chen","doi":"10.5750/ijme.v162ia1.1123","DOIUrl":null,"url":null,"abstract":"This brief is devoted to the predesigned motion trajectory-based finite time dynamic positioning (DP) control for a marine surface vehicle (MSV) with unknown external disturbances. Firstly, a preset motion trajectory is presented through establishing the relationship function among position tracking errors and heading tracking error, facilitating the MSV to arrive in the equilibrium point along the pre-designed trajectory. Furthermore, a novel nonsingular and fast terminal sliding mode control (NTSMC) approach is investigated, which ensures faster convergence rate and better stability performance of the close-loop system than the conventional backstepping control approach. What’s more, by incorporating the adaptive technique with the NTSMC approach, an adaptive nonsingular and fast terminal sliding mode control (ANTSMC) strategy is addressed. Compared to the NTSMC approach, it strengthens robustness to disturbances and guarantees system states to converge to a closer neighborhood of the equilibrium point. Finally, simulation results illustrate the remarkable effectiveness of proposed control schemes.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE MOTION TRAJECTORY-BASED FINITE-TIME CONTROL FOR THE MARINE SURFACE VEHICLE\",\"authors\":\"H. Chen, H. Ren, B. Yang, J. Chen\",\"doi\":\"10.5750/ijme.v162ia1.1123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief is devoted to the predesigned motion trajectory-based finite time dynamic positioning (DP) control for a marine surface vehicle (MSV) with unknown external disturbances. Firstly, a preset motion trajectory is presented through establishing the relationship function among position tracking errors and heading tracking error, facilitating the MSV to arrive in the equilibrium point along the pre-designed trajectory. Furthermore, a novel nonsingular and fast terminal sliding mode control (NTSMC) approach is investigated, which ensures faster convergence rate and better stability performance of the close-loop system than the conventional backstepping control approach. What’s more, by incorporating the adaptive technique with the NTSMC approach, an adaptive nonsingular and fast terminal sliding mode control (ANTSMC) strategy is addressed. Compared to the NTSMC approach, it strengthens robustness to disturbances and guarantees system states to converge to a closer neighborhood of the equilibrium point. Finally, simulation results illustrate the remarkable effectiveness of proposed control schemes.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v162ia1.1123\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v162ia1.1123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了具有未知外部干扰的海洋水面航行器(MSV)基于预先设计运动轨迹的有限时间动态定位控制。首先,通过建立位置跟踪误差与航向跟踪误差之间的关系函数,给出了预定的运动轨迹,使飞行器沿预定轨迹到达平衡点;在此基础上,研究了一种新型的非奇异快速终端滑模控制(NTSMC)方法,该方法比传统的反步控制方法具有更快的收敛速度和更好的闭环系统稳定性。将自适应技术与非奇异终端滑模控制方法相结合,提出了一种自适应非奇异终端滑模快速控制策略。与NTSMC方法相比,该方法增强了系统对扰动的鲁棒性,并保证系统状态收敛到平衡点附近。最后,仿真结果验证了所提控制方案的显著有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE MOTION TRAJECTORY-BASED FINITE-TIME CONTROL FOR THE MARINE SURFACE VEHICLE
This brief is devoted to the predesigned motion trajectory-based finite time dynamic positioning (DP) control for a marine surface vehicle (MSV) with unknown external disturbances. Firstly, a preset motion trajectory is presented through establishing the relationship function among position tracking errors and heading tracking error, facilitating the MSV to arrive in the equilibrium point along the pre-designed trajectory. Furthermore, a novel nonsingular and fast terminal sliding mode control (NTSMC) approach is investigated, which ensures faster convergence rate and better stability performance of the close-loop system than the conventional backstepping control approach. What’s more, by incorporating the adaptive technique with the NTSMC approach, an adaptive nonsingular and fast terminal sliding mode control (ANTSMC) strategy is addressed. Compared to the NTSMC approach, it strengthens robustness to disturbances and guarantees system states to converge to a closer neighborhood of the equilibrium point. Finally, simulation results illustrate the remarkable effectiveness of proposed control schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信