关于球片变换

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Rubin
{"title":"关于球片变换","authors":"B. Rubin","doi":"10.1142/s021953052150024x","DOIUrl":null,"url":null,"abstract":"We study the spherical slice transform which assigns to a function on the $n$-dimensional unit sphere the integrals of that function over cross-sections of the sphere by $k$-dimensional affine planes passing through the north pole. These transforms are well known when $k=n$. We consider all $1< k < n+1$ and obtain an explicit formula connecting the spherical slice transform with the classical Radon-John transform over $(k-1)$-dimensional planes in the $n$-dimensional Euclidean space. Using this connection, known facts for the Radon-John transform, like inversion formulas, support theorem, representation on zonal functions, and others, can be reformulated for the spherical slice transform.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Spherical Slice Transform\",\"authors\":\"B. Rubin\",\"doi\":\"10.1142/s021953052150024x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the spherical slice transform which assigns to a function on the $n$-dimensional unit sphere the integrals of that function over cross-sections of the sphere by $k$-dimensional affine planes passing through the north pole. These transforms are well known when $k=n$. We consider all $1< k < n+1$ and obtain an explicit formula connecting the spherical slice transform with the classical Radon-John transform over $(k-1)$-dimensional planes in the $n$-dimensional Euclidean space. Using this connection, known facts for the Radon-John transform, like inversion formulas, support theorem, representation on zonal functions, and others, can be reformulated for the spherical slice transform.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021953052150024x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021953052150024x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了一个函数在n维单位球面上通过k维仿射平面经过北极在球面横截面上的积分的球切片变换。当k=n时,这些变换是众所周知的。我们考虑所有$1< k < n+1$,得到了在$n$维欧几里德空间中$(k-1)$维平面上的球面片变换与经典Radon-John变换之间的显式公式。利用这种联系,Radon-John变换的已知事实,如反演公式、支持定理、区域函数的表示等,可以在球片变换中重新表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Spherical Slice Transform
We study the spherical slice transform which assigns to a function on the $n$-dimensional unit sphere the integrals of that function over cross-sections of the sphere by $k$-dimensional affine planes passing through the north pole. These transforms are well known when $k=n$. We consider all $1< k < n+1$ and obtain an explicit formula connecting the spherical slice transform with the classical Radon-John transform over $(k-1)$-dimensional planes in the $n$-dimensional Euclidean space. Using this connection, known facts for the Radon-John transform, like inversion formulas, support theorem, representation on zonal functions, and others, can be reformulated for the spherical slice transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信