临界Fourier-Besov-Morrey空间中具有科里奥利力的分数阶Navier-Stokes方程的一致适定性和稳定性

A. E. Baraka, Mohamed Toumlilin
{"title":"临界Fourier-Besov-Morrey空间中具有科里奥利力的分数阶Navier-Stokes方程的一致适定性和稳定性","authors":"A. E. Baraka, Mohamed Toumlilin","doi":"10.30538/PSRP-OMA2019.0034","DOIUrl":null,"url":null,"abstract":"Abstract: In this paper, we study the Cauchy problem of the fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood-Paley theory, we get a local well-posedness results and global well-posedness results with small initial data belonging to the critical Fourier-Besov-Morrey spaces. Moreover; we prove that the corresponding global solution decays to zero as time goes to infinity, and we give the stability result for global solutions.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Uniform well-posedness and stability for fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces\",\"authors\":\"A. E. Baraka, Mohamed Toumlilin\",\"doi\":\"10.30538/PSRP-OMA2019.0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In this paper, we study the Cauchy problem of the fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood-Paley theory, we get a local well-posedness results and global well-posedness results with small initial data belonging to the critical Fourier-Besov-Morrey spaces. Moreover; we prove that the corresponding global solution decays to zero as time goes to infinity, and we give the stability result for global solutions.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-OMA2019.0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2019.0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要:本文研究了临界Fourier Besov-Morrey空间中具有科里奥利力的分数阶Navier-Stokes方程的Cauchy问题。利用傅立叶局部化理论和Littlewood-Paley理论,我们得到了一个属于临界傅立叶-Besov-Morrey空间的具有小初始数据的局部适定性结果和全局适定性结果。此外我们证明了相应的全局解随着时间的无穷大而衰减为零,并给出了全局解的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform well-posedness and stability for fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces
Abstract: In this paper, we study the Cauchy problem of the fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces. By using the Fourier localization argument and the Littlewood-Paley theory, we get a local well-posedness results and global well-posedness results with small initial data belonging to the critical Fourier-Besov-Morrey spaces. Moreover; we prove that the corresponding global solution decays to zero as time goes to infinity, and we give the stability result for global solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信