某些混合特征情况下Barsotti-Tate群的纯度

IF 1.2 1区 数学 Q1 MATHEMATICS
O. Gabber, A. Vasiu
{"title":"某些混合特征情况下Barsotti-Tate群的纯度","authors":"O. Gabber, A. Vasiu","doi":"10.14231/AG-2021-015","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\\in C(k)[[x_1,\\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\\ldots,x_d^p)+(x_1,\\ldots,x_d)^{2p-2}$ of $k[[x_1,\\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\\text{Frac}(R)$ which extends to every local ring of $\\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Purity for Barsotti–Tate groups in some mixed characteristic situations\",\"authors\":\"O. Gabber, A. Vasiu\",\"doi\":\"10.14231/AG-2021-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\\\\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\\\\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\\\\in C(k)[[x_1,\\\\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\\\\ldots,x_d^p)+(x_1,\\\\ldots,x_d)^{2p-2}$ of $k[[x_1,\\\\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\\\\text{Frac}(R)$ which extends to every local ring of $\\\\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\\\\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2021-015\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-015","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

让 $p$ 做一个素数。让 $R$ 是一个有维数的正则局部环 $d\ge 2$ 谁的完成是同构的 $C(k)[[x_1,\ldots,x_d]]/(h)$, with $C(k)$ 一个具有相同剩余域的科恩环 $k$ as $R$ 和 $h\in C(k)[[x_1,\ldots,x_d]]$ 使得它的化简模 $p$ 不属于理想吗 $(x_1^p,\ldots,x_d^p)+(x_1,\ldots,x_d)^{2p-2}$ 的 $k[[x_1,\ldots,x_d]]$. 我们推广了Vasiu-Zink的结果 $d=2$)来展示每个Barsotti-Tate组 $\text{Frac}(R)$ 它延伸到的每个局部环 $\text{Spec}(R)$ 尺寸的 $1$,唯一延伸到巴索蒂-泰特组 $R$. 这个结果在许多情况下纠正了文献中的一些错误。作为一个应用程序,我们得到if $Y$ 正则积分方案是否使得的每个局部环的补全 $Y$ 残馀特性 $p$ 一个形式幂级数环是否在某绝对分支指数的完全离散估值环上 $e\le p-1$,则各Barsotti-Tate群上的泛型点 $Y$ 它延伸到的每个局部环 $Y$ 尺寸的 $1$,唯一延伸到巴索蒂-泰特组 $Y$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purity for Barsotti–Tate groups in some mixed characteristic situations
Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\in C(k)[[x_1,\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\ldots,x_d^p)+(x_1,\ldots,x_d)^{2p-2}$ of $k[[x_1,\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\text{Frac}(R)$ which extends to every local ring of $\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信