某些混合特征情况下Barsotti-Tate群的纯度

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
O. Gabber, A. Vasiu
{"title":"某些混合特征情况下Barsotti-Tate群的纯度","authors":"O. Gabber, A. Vasiu","doi":"10.14231/AG-2021-015","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\\in C(k)[[x_1,\\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\\ldots,x_d^p)+(x_1,\\ldots,x_d)^{2p-2}$ of $k[[x_1,\\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\\text{Frac}(R)$ which extends to every local ring of $\\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Purity for Barsotti–Tate groups in some mixed characteristic situations\",\"authors\":\"O. Gabber, A. Vasiu\",\"doi\":\"10.14231/AG-2021-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\\\\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\\\\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\\\\in C(k)[[x_1,\\\\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\\\\ldots,x_d^p)+(x_1,\\\\ldots,x_d)^{2p-2}$ of $k[[x_1,\\\\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\\\\text{Frac}(R)$ which extends to every local ring of $\\\\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\\\\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2021-015\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

让 $p$ 做一个素数。让 $R$ 是一个有维数的正则局部环 $d\ge 2$ 谁的完成是同构的 $C(k)[[x_1,\ldots,x_d]]/(h)$, with $C(k)$ 一个具有相同剩余域的科恩环 $k$ as $R$ 和 $h\in C(k)[[x_1,\ldots,x_d]]$ 使得它的化简模 $p$ 不属于理想吗 $(x_1^p,\ldots,x_d^p)+(x_1,\ldots,x_d)^{2p-2}$ 的 $k[[x_1,\ldots,x_d]]$. 我们推广了Vasiu-Zink的结果 $d=2$)来展示每个Barsotti-Tate组 $\text{Frac}(R)$ 它延伸到的每个局部环 $\text{Spec}(R)$ 尺寸的 $1$,唯一延伸到巴索蒂-泰特组 $R$. 这个结果在许多情况下纠正了文献中的一些错误。作为一个应用程序,我们得到if $Y$ 正则积分方案是否使得的每个局部环的补全 $Y$ 残馀特性 $p$ 一个形式幂级数环是否在某绝对分支指数的完全离散估值环上 $e\le p-1$,则各Barsotti-Tate群上的泛型点 $Y$ 它延伸到的每个局部环 $Y$ 尺寸的 $1$,唯一延伸到巴索蒂-泰特组 $Y$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purity for Barsotti–Tate groups in some mixed characteristic situations
Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\in C(k)[[x_1,\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\ldots,x_d^p)+(x_1,\ldots,x_d)^{2p-2}$ of $k[[x_1,\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\text{Frac}(R)$ which extends to every local ring of $\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信