{"title":"某些混合特征情况下Barsotti-Tate群的纯度","authors":"O. Gabber, A. Vasiu","doi":"10.14231/AG-2021-015","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\\in C(k)[[x_1,\\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\\ldots,x_d^p)+(x_1,\\ldots,x_d)^{2p-2}$ of $k[[x_1,\\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\\text{Frac}(R)$ which extends to every local ring of $\\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Purity for Barsotti–Tate groups in some mixed characteristic situations\",\"authors\":\"O. Gabber, A. Vasiu\",\"doi\":\"10.14231/AG-2021-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\\\\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\\\\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\\\\in C(k)[[x_1,\\\\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\\\\ldots,x_d^p)+(x_1,\\\\ldots,x_d)^{2p-2}$ of $k[[x_1,\\\\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\\\\text{Frac}(R)$ which extends to every local ring of $\\\\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\\\\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2021-015\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-015","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Purity for Barsotti–Tate groups in some mixed characteristic situations
Let $p$ be a prime. Let $R$ be a regular local ring of dimension $d\ge 2$ whose completion is isomorphic to $C(k)[[x_1,\ldots,x_d]]/(h)$, with $C(k)$ a Cohen ring with the same residue field $k$ as $R$ and with $h\in C(k)[[x_1,\ldots,x_d]]$ such that its reduction modulo $p$ does not belong to the ideal $(x_1^p,\ldots,x_d^p)+(x_1,\ldots,x_d)^{2p-2}$ of $k[[x_1,\ldots,x_d]]$. We extend a result of Vasiu-Zink (for $d=2$) to show that each Barsotti-Tate group over $\text{Frac}(R)$ which extends to every local ring of $\text{Spec}(R)$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $R$. This result corrects in many cases several errors in the literature. As an application, we get that if $Y$ is a regular integral scheme such that the completion of each local ring of $Y$ of residue characteristic $p$ is a formal power series ring over some complete discrete valuation ring of absolute ramification index $e\le p-1$, then each Barsotti-Tate group over the generic point of $Y$ which extends to every local ring of $Y$ of dimension $1$, extends uniquely to a Barsotti-Tate group over $Y$.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.