{"title":"具有重尾线性过程误差的VEC(1)模型的推断*","authors":"Feifei Guo, S. Ling","doi":"10.1080/07474938.2023.2227019","DOIUrl":null,"url":null,"abstract":"Abstract This article studies the first-order vector error correction (VEC(1)) model when its noise is a linear process of independent and identically distributed (i.i.d.) heavy-tailed random vectors with a tail index . We show that the rate of convergence of the least squares estimator (LSE) related to the long-run parameters is n (sample size) and its limiting distribution is a stochastic integral in terms of two stable random processes, while the LSE related to the short-term parameters is not consistent. We further propose an automated approach via adaptive shrinkage techniques to determine the cointegrating rank in the VEC(1) model. It is demonstrated that the cointegration rank r 0 can be consistently selected despite the fact that the LSE related to the short-term parameters is not consistently estimable when the tail index . Simulation studies are carried out to evaluate the performance of the proposed procedure in finite samples. Last, we use our techniques to explore the long-run and short-run behavior of the monthly prices of wheat, corn, and wheat flour in the United States.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"806 - 833"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference for the VEC(1) model with a heavy-tailed linear process errors*\",\"authors\":\"Feifei Guo, S. Ling\",\"doi\":\"10.1080/07474938.2023.2227019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article studies the first-order vector error correction (VEC(1)) model when its noise is a linear process of independent and identically distributed (i.i.d.) heavy-tailed random vectors with a tail index . We show that the rate of convergence of the least squares estimator (LSE) related to the long-run parameters is n (sample size) and its limiting distribution is a stochastic integral in terms of two stable random processes, while the LSE related to the short-term parameters is not consistent. We further propose an automated approach via adaptive shrinkage techniques to determine the cointegrating rank in the VEC(1) model. It is demonstrated that the cointegration rank r 0 can be consistently selected despite the fact that the LSE related to the short-term parameters is not consistently estimable when the tail index . Simulation studies are carried out to evaluate the performance of the proposed procedure in finite samples. Last, we use our techniques to explore the long-run and short-run behavior of the monthly prices of wheat, corn, and wheat flour in the United States.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"806 - 833\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2227019\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2227019","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Inference for the VEC(1) model with a heavy-tailed linear process errors*
Abstract This article studies the first-order vector error correction (VEC(1)) model when its noise is a linear process of independent and identically distributed (i.i.d.) heavy-tailed random vectors with a tail index . We show that the rate of convergence of the least squares estimator (LSE) related to the long-run parameters is n (sample size) and its limiting distribution is a stochastic integral in terms of two stable random processes, while the LSE related to the short-term parameters is not consistent. We further propose an automated approach via adaptive shrinkage techniques to determine the cointegrating rank in the VEC(1) model. It is demonstrated that the cointegration rank r 0 can be consistently selected despite the fact that the LSE related to the short-term parameters is not consistently estimable when the tail index . Simulation studies are carried out to evaluate the performance of the proposed procedure in finite samples. Last, we use our techniques to explore the long-run and short-run behavior of the monthly prices of wheat, corn, and wheat flour in the United States.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.