激光粉末床熔融增材制造马氏体时效件的开裂敏感性:粉末特性及底板预热影响研究

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
E. Gil, A. Mancisidor, A. Iturrioz, F. Garciandía, M. San Sebastian
{"title":"激光粉末床熔融增材制造马氏体时效件的开裂敏感性:粉末特性及底板预热影响研究","authors":"E. Gil, A. Mancisidor, A. Iturrioz, F. Garciandía, M. San Sebastian","doi":"10.1080/00325899.2023.2213006","DOIUrl":null,"url":null,"abstract":"ABSTRACT Maraging steel 300 processed by laser powder bed fusion (PBF-LB/M) is widely used for manufacturing inserts and moulds with conformal cooling channels. For such applications, high fracture toughness and strength are required to withstand thermal fatigue and any defect like pores, lack of fusion and cracks should be avoided so that the durability of the mould is not reduced. Maraging steel is prone to be cracked due to thermal gradients which arise during PBF-LB/M. Moreover, it was recently observed that slight variations in composition led to the crack’s presence, which implied lower mechanical properties. In this study, two powder batches, from the same powder producer, were employed with the same processing parameters. The effect of small changes in minor elements composition of the powder batch on cracking was studied and the preheating temperature was varied to significantly reduce the crack density. The presence of cracks significantly reduced the ductility of the parts.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking susceptibility of maraging parts manufactured by laser powder bed fusion additive manufacturing: study on the powder characteristics and baseplate preheating influence\",\"authors\":\"E. Gil, A. Mancisidor, A. Iturrioz, F. Garciandía, M. San Sebastian\",\"doi\":\"10.1080/00325899.2023.2213006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Maraging steel 300 processed by laser powder bed fusion (PBF-LB/M) is widely used for manufacturing inserts and moulds with conformal cooling channels. For such applications, high fracture toughness and strength are required to withstand thermal fatigue and any defect like pores, lack of fusion and cracks should be avoided so that the durability of the mould is not reduced. Maraging steel is prone to be cracked due to thermal gradients which arise during PBF-LB/M. Moreover, it was recently observed that slight variations in composition led to the crack’s presence, which implied lower mechanical properties. In this study, two powder batches, from the same powder producer, were employed with the same processing parameters. The effect of small changes in minor elements composition of the powder batch on cracking was studied and the preheating temperature was varied to significantly reduce the crack density. The presence of cracks significantly reduced the ductility of the parts.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2023.2213006\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2213006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cracking susceptibility of maraging parts manufactured by laser powder bed fusion additive manufacturing: study on the powder characteristics and baseplate preheating influence
ABSTRACT Maraging steel 300 processed by laser powder bed fusion (PBF-LB/M) is widely used for manufacturing inserts and moulds with conformal cooling channels. For such applications, high fracture toughness and strength are required to withstand thermal fatigue and any defect like pores, lack of fusion and cracks should be avoided so that the durability of the mould is not reduced. Maraging steel is prone to be cracked due to thermal gradients which arise during PBF-LB/M. Moreover, it was recently observed that slight variations in composition led to the crack’s presence, which implied lower mechanical properties. In this study, two powder batches, from the same powder producer, were employed with the same processing parameters. The effect of small changes in minor elements composition of the powder batch on cracking was studied and the preheating temperature was varied to significantly reduce the crack density. The presence of cracks significantly reduced the ductility of the parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信