面向智能故障排除的技术词嵌入因果表示学习

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Trilla, Nenad Mijatovic, Xavier Vilasis-Cardona
{"title":"面向智能故障排除的技术词嵌入因果表示学习","authors":"A. Trilla, Nenad Mijatovic, Xavier Vilasis-Cardona","doi":"10.36001/ijphm.2022.v13i2.3127","DOIUrl":null,"url":null,"abstract":"This work explores how the causality inference paradigm may be applied to troubleshoot the root causes of failures through language processing and Deep Learning. To do so, the causality hierarchy has been taken for reference: associative, interventional, and retrospective levels of causality have thus been researched within textual data in the form of a failure analysis ontology and a set of written records on Return On Experience. A novel approach to extracting linguistic knowledge has been devised through the joint embedding of two contextualized Bag-Of-Words models, which defines both a probabilistic framework and a distributed representation of the underlying causal semantics. This method has been applied to the maintenance of rolling stock bogies, and the results indicate that the inference of causality has been partially attained with the currently available technical documentation (consensus over 70%). However, there is still some disagreement between root causes and problems that leads to confusion and uncertainty. In consequence, the proposed approach may be used as a strategy to detect lexical imprecision, make writing recommendations in the form of standard reporting guidelines, and ultimately help produce clearer diagnosis materials to increase the safety of the railway service.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Learning Causal Representations of Technical Word Embeddings for Smart Troubleshooting\",\"authors\":\"A. Trilla, Nenad Mijatovic, Xavier Vilasis-Cardona\",\"doi\":\"10.36001/ijphm.2022.v13i2.3127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores how the causality inference paradigm may be applied to troubleshoot the root causes of failures through language processing and Deep Learning. To do so, the causality hierarchy has been taken for reference: associative, interventional, and retrospective levels of causality have thus been researched within textual data in the form of a failure analysis ontology and a set of written records on Return On Experience. A novel approach to extracting linguistic knowledge has been devised through the joint embedding of two contextualized Bag-Of-Words models, which defines both a probabilistic framework and a distributed representation of the underlying causal semantics. This method has been applied to the maintenance of rolling stock bogies, and the results indicate that the inference of causality has been partially attained with the currently available technical documentation (consensus over 70%). However, there is still some disagreement between root causes and problems that leads to confusion and uncertainty. In consequence, the proposed approach may be used as a strategy to detect lexical imprecision, make writing recommendations in the form of standard reporting guidelines, and ultimately help produce clearer diagnosis materials to increase the safety of the railway service.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2022.v13i2.3127\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2022.v13i2.3127","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

这项工作探讨了如何通过语言处理和深度学习应用因果推理范式来解决故障的根本原因。为此,我们参考了因果关系层次:因此,我们在失败分析本体论和一组关于经验回报的书面记录的文本数据中研究了因果关系的关联、介入和回顾层次。通过联合嵌入两个语境化词袋模型,设计了一种新的提取语言知识的方法,该方法定义了概率框架和潜在因果语义的分布式表示。该方法已应用于机车车辆转向架的维修,结果表明,因果关系的推断已与现有的技术文件部分达成(一致性超过70%)。然而,在根本原因和问题之间仍然存在一些分歧,导致混乱和不确定性。因此,所提出的方法可以作为一种策略来检测词汇不精确,以标准报告指南的形式提出书面建议,并最终帮助产生更清晰的诊断材料,以提高铁路服务的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Learning Causal Representations of Technical Word Embeddings for Smart Troubleshooting
This work explores how the causality inference paradigm may be applied to troubleshoot the root causes of failures through language processing and Deep Learning. To do so, the causality hierarchy has been taken for reference: associative, interventional, and retrospective levels of causality have thus been researched within textual data in the form of a failure analysis ontology and a set of written records on Return On Experience. A novel approach to extracting linguistic knowledge has been devised through the joint embedding of two contextualized Bag-Of-Words models, which defines both a probabilistic framework and a distributed representation of the underlying causal semantics. This method has been applied to the maintenance of rolling stock bogies, and the results indicate that the inference of causality has been partially attained with the currently available technical documentation (consensus over 70%). However, there is still some disagreement between root causes and problems that leads to confusion and uncertainty. In consequence, the proposed approach may be used as a strategy to detect lexical imprecision, make writing recommendations in the form of standard reporting guidelines, and ultimately help produce clearer diagnosis materials to increase the safety of the railway service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信