{"title":"关于希尔德布兰德的一个定理","authors":"C. Dietzel","doi":"10.2140/moscow.2019.8.189","DOIUrl":null,"url":null,"abstract":"We prove that for each multiplicative subgroup $A$ of finite index in $\\mathbb{Q}^+$, the set of integers $a$ with $a, a+1 \\in A$ is an IP-set. This generalizes a theorem of Hildebrand concerning completely multiplicative functions taking values in the $k$-th roots of unity.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.189","citationCount":"0","resultStr":"{\"title\":\"On a theorem of Hildebrand\",\"authors\":\"C. Dietzel\",\"doi\":\"10.2140/moscow.2019.8.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for each multiplicative subgroup $A$ of finite index in $\\\\mathbb{Q}^+$, the set of integers $a$ with $a, a+1 \\\\in A$ is an IP-set. This generalizes a theorem of Hildebrand concerning completely multiplicative functions taking values in the $k$-th roots of unity.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
证明了对于$\mathbb{Q}^+$中有限索引的每一个乘法子群$A$,在A$中具有$A, A +1的整数$A$的集合$A$是一个ip集。这推广了希尔德布兰德关于在单位的k次根处取值的完全乘法函数的定理。
We prove that for each multiplicative subgroup $A$ of finite index in $\mathbb{Q}^+$, the set of integers $a$ with $a, a+1 \in A$ is an IP-set. This generalizes a theorem of Hildebrand concerning completely multiplicative functions taking values in the $k$-th roots of unity.