{"title":"一类拟线性问题鞍型解的存在性","authors":"C. O. Alves, Renan J. S. Isneri, P. Montecchiari","doi":"10.12775/tmna.2022.039","DOIUrl":null,"url":null,"abstract":"The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems\n$$\n-\\Delta_{\\Phi}u + V'(u)=0\\quad \\text{in }\\mathbb{R}^2,\n$$%\nwhere\n$$\n\\Delta_{\\Phi}u=\\text{div}(\\phi(|\\nabla u|)\\nabla u),\n$$%\n$\\Phi\\colon \\mathbb{R}\\rightarrow [0,+\\infty)$ is an N-function\nand the potential $V$ satisfies some technical condition and we have\nas an example $ V(t)=\\Phi(|t^2-1|)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of saddle-type solutions for a class of quasilinear problems in R^2\",\"authors\":\"C. O. Alves, Renan J. S. Isneri, P. Montecchiari\",\"doi\":\"10.12775/tmna.2022.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems\\n$$\\n-\\\\Delta_{\\\\Phi}u + V'(u)=0\\\\quad \\\\text{in }\\\\mathbb{R}^2,\\n$$%\\nwhere\\n$$\\n\\\\Delta_{\\\\Phi}u=\\\\text{div}(\\\\phi(|\\\\nabla u|)\\\\nabla u),\\n$$%\\n$\\\\Phi\\\\colon \\\\mathbb{R}\\\\rightarrow [0,+\\\\infty)$ is an N-function\\nand the potential $V$ satisfies some technical condition and we have\\nas an example $ V(t)=\\\\Phi(|t^2-1|)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of saddle-type solutions for a class of quasilinear problems in R^2
The main goal of the present paper is to prove the existence of saddle-type solutions for the following class of quasilinear problems
$$
-\Delta_{\Phi}u + V'(u)=0\quad \text{in }\mathbb{R}^2,
$$%
where
$$
\Delta_{\Phi}u=\text{div}(\phi(|\nabla u|)\nabla u),
$$%
$\Phi\colon \mathbb{R}\rightarrow [0,+\infty)$ is an N-function
and the potential $V$ satisfies some technical condition and we have
as an example $ V(t)=\Phi(|t^2-1|)$.