{"title":"(p, r)-ρ-(η, θ)- invinvity下不可微极大极小比约束问题的充分最优性条件和对偶性","authors":"N. Kailey, Sonali Sethi, Shivani Saini","doi":"10.2478/candc-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract There are several classes of decision-making problems that explicitly or implicitly prompt fractional programming problems. Portfolio selection problems, agricultural planning, information transfer, numerical analysis of stochastic processes, and resource allocation problems are just a few examples. The huge number of applications of minimax fractional programming problems inspired us to work on this topic. This paper is concerned with a nondifferentiable minimax fractional programming problem. We study a parametric dual model, corresponding to the primal problem, and derive the sufficient optimality condition for an optimal solution to the considered problem. Further, we obtain the various duality results under (p, r)-ρ-(η, θ)-invexity assumptions. Also, we identify a function lying exclusively in the class of (−1, 1)-ρ-(η, θ)-invex functions but not in the class of (1, −1)-invex functions and convex function already existing in the literature. We have given a non-trivial model of nondifferentiable minimax problem and obtained its optimal solution using optimality results derived in this paper.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"51 1","pages":"71 - 89"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient optimality condition and duality of nondifferentiable minimax ratio constraint problems under (p, r)-ρ-(η, θ)-invexity\",\"authors\":\"N. Kailey, Sonali Sethi, Shivani Saini\",\"doi\":\"10.2478/candc-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There are several classes of decision-making problems that explicitly or implicitly prompt fractional programming problems. Portfolio selection problems, agricultural planning, information transfer, numerical analysis of stochastic processes, and resource allocation problems are just a few examples. The huge number of applications of minimax fractional programming problems inspired us to work on this topic. This paper is concerned with a nondifferentiable minimax fractional programming problem. We study a parametric dual model, corresponding to the primal problem, and derive the sufficient optimality condition for an optimal solution to the considered problem. Further, we obtain the various duality results under (p, r)-ρ-(η, θ)-invexity assumptions. Also, we identify a function lying exclusively in the class of (−1, 1)-ρ-(η, θ)-invex functions but not in the class of (1, −1)-invex functions and convex function already existing in the literature. We have given a non-trivial model of nondifferentiable minimax problem and obtained its optimal solution using optimality results derived in this paper.\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"51 1\",\"pages\":\"71 - 89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Sufficient optimality condition and duality of nondifferentiable minimax ratio constraint problems under (p, r)-ρ-(η, θ)-invexity
Abstract There are several classes of decision-making problems that explicitly or implicitly prompt fractional programming problems. Portfolio selection problems, agricultural planning, information transfer, numerical analysis of stochastic processes, and resource allocation problems are just a few examples. The huge number of applications of minimax fractional programming problems inspired us to work on this topic. This paper is concerned with a nondifferentiable minimax fractional programming problem. We study a parametric dual model, corresponding to the primal problem, and derive the sufficient optimality condition for an optimal solution to the considered problem. Further, we obtain the various duality results under (p, r)-ρ-(η, θ)-invexity assumptions. Also, we identify a function lying exclusively in the class of (−1, 1)-ρ-(η, θ)-invex functions but not in the class of (1, −1)-invex functions and convex function already existing in the literature. We have given a non-trivial model of nondifferentiable minimax problem and obtained its optimal solution using optimality results derived in this paper.
期刊介绍:
The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research:
Systems and control theory:
general systems theory,
optimal cotrol,
optimization theory,
data analysis, learning, artificial intelligence,
modelling & identification,
game theory, multicriteria optimisation, decision and negotiation methods,
soft approaches: stochastic and fuzzy methods,
computer science,