Mengmeng Yi, Chun Wang, He Wang, Xi Zhu, Zhigang Liu, F. Gao, X. Ke, Jianmeng Cao, Miao Wang, Ying Liu, Mai-xin Lu
{"title":"固定化不同载体上的商业益生菌对水产养殖水体和沉积物的原位修复","authors":"Mengmeng Yi, Chun Wang, He Wang, Xi Zhu, Zhigang Liu, F. Gao, X. Ke, Jianmeng Cao, Miao Wang, Ying Liu, Mai-xin Lu","doi":"10.2166/wrd.2021.049","DOIUrl":null,"url":null,"abstract":"\n In the present study, we investigated the effect of probiotics immobilized by oyster shells (Os), vesuvianite (Ve) and walnut shells (Ws) on the remediation of aquaculture water and sediment by analyzing the variation of ammonia-nitrogen (NH4–N), nitrate-nitrogen (NO3–N), nitrite-nitrogen (NO2–N), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (CODCr), as well as the microbiota of the water and sediment. The positive or negative effects of the treatment groups on the water quality parameters were both observed. Compared with their effects on water quality parameters, the treatment groups had better effects on sediment parameters. Group Ve had the best remediation effect of NH4–N and NO3–N in the sediment (decreased by 5.22 and 1.66 times, respectively). Group Os showed a lower relative concentration of TN and CODCr (decreased by 3.77 and 0.95 times, respectively). The high-throughput sequencing results revealed that the immobilized probiotics increased the relative abundances of functional bacteria in the treatment groups at the phylum and genus level. The above results showed that probiotics immobilized by oyster shells, vesuvianite and walnut shells positively affected the aquaculture environment's remediation, especially the sediment.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The in situ remediation of aquaculture water and sediment by commercial probiotics immobilized on different carriers\",\"authors\":\"Mengmeng Yi, Chun Wang, He Wang, Xi Zhu, Zhigang Liu, F. Gao, X. Ke, Jianmeng Cao, Miao Wang, Ying Liu, Mai-xin Lu\",\"doi\":\"10.2166/wrd.2021.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present study, we investigated the effect of probiotics immobilized by oyster shells (Os), vesuvianite (Ve) and walnut shells (Ws) on the remediation of aquaculture water and sediment by analyzing the variation of ammonia-nitrogen (NH4–N), nitrate-nitrogen (NO3–N), nitrite-nitrogen (NO2–N), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (CODCr), as well as the microbiota of the water and sediment. The positive or negative effects of the treatment groups on the water quality parameters were both observed. Compared with their effects on water quality parameters, the treatment groups had better effects on sediment parameters. Group Ve had the best remediation effect of NH4–N and NO3–N in the sediment (decreased by 5.22 and 1.66 times, respectively). Group Os showed a lower relative concentration of TN and CODCr (decreased by 3.77 and 0.95 times, respectively). The high-throughput sequencing results revealed that the immobilized probiotics increased the relative abundances of functional bacteria in the treatment groups at the phylum and genus level. The above results showed that probiotics immobilized by oyster shells, vesuvianite and walnut shells positively affected the aquaculture environment's remediation, especially the sediment.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2021.049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2021.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
The in situ remediation of aquaculture water and sediment by commercial probiotics immobilized on different carriers
In the present study, we investigated the effect of probiotics immobilized by oyster shells (Os), vesuvianite (Ve) and walnut shells (Ws) on the remediation of aquaculture water and sediment by analyzing the variation of ammonia-nitrogen (NH4–N), nitrate-nitrogen (NO3–N), nitrite-nitrogen (NO2–N), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (CODCr), as well as the microbiota of the water and sediment. The positive or negative effects of the treatment groups on the water quality parameters were both observed. Compared with their effects on water quality parameters, the treatment groups had better effects on sediment parameters. Group Ve had the best remediation effect of NH4–N and NO3–N in the sediment (decreased by 5.22 and 1.66 times, respectively). Group Os showed a lower relative concentration of TN and CODCr (decreased by 3.77 and 0.95 times, respectively). The high-throughput sequencing results revealed that the immobilized probiotics increased the relative abundances of functional bacteria in the treatment groups at the phylum and genus level. The above results showed that probiotics immobilized by oyster shells, vesuvianite and walnut shells positively affected the aquaculture environment's remediation, especially the sediment.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.