关于球对称Landsberg度量

IF 0.4 Q4 MATHEMATICS
B. Tiwari, Ranadip Gangopadhyay, G. K. Prajapati, Manoj Kumar
{"title":"关于球对称Landsberg度量","authors":"B. Tiwari, Ranadip Gangopadhyay, G. K. Prajapati, Manoj Kumar","doi":"10.1080/1726037X.2018.1551718","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we have studied spherically symmetric Landsberg metrics with isotropic E-curvature and isotropic S-curvature. In the first case we have shown that the metric reduces to a Berwald metric and therefore, it is of vanishing E-curvature. In the second case we have completely classified the spherically symmetric Landsberg metric with isotropic S-curvature.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"17 1","pages":"71 - 81"},"PeriodicalIF":0.4000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2018.1551718","citationCount":"1","resultStr":"{\"title\":\"On Spherically Symmetric Landsberg Metrics\",\"authors\":\"B. Tiwari, Ranadip Gangopadhyay, G. K. Prajapati, Manoj Kumar\",\"doi\":\"10.1080/1726037X.2018.1551718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we have studied spherically symmetric Landsberg metrics with isotropic E-curvature and isotropic S-curvature. In the first case we have shown that the metric reduces to a Berwald metric and therefore, it is of vanishing E-curvature. In the second case we have completely classified the spherically symmetric Landsberg metric with isotropic S-curvature.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"17 1\",\"pages\":\"71 - 81\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2018.1551718\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2018.1551718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2018.1551718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了具有各向同性E曲率和各向同性S曲率的球对称Landsberg度量。在第一种情况下,我们已经证明了度量减少到Berwald度量,因此,它具有消失的E曲率。在第二种情况下,我们完全分类了具有各向同性S曲率的球对称Landsberg度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Spherically Symmetric Landsberg Metrics
ABSTRACT In this paper, we have studied spherically symmetric Landsberg metrics with isotropic E-curvature and isotropic S-curvature. In the first case we have shown that the metric reduces to a Berwald metric and therefore, it is of vanishing E-curvature. In the second case we have completely classified the spherically symmetric Landsberg metric with isotropic S-curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信