{"title":"集值连续函数的korovkin型逼近","authors":"M. Campiti","doi":"10.33205/CMA.863145","DOIUrl":null,"url":null,"abstract":"This paper is devoted to some Korovkin approximation results in cones of Hausdorff continuous set-valued functions and in spaces of vector valued functions. Some classical results are exposed in order to give a more complete treatment of the subject. New contributions are concerned both with the general theory than in particular with the so-called convexity monotone operators, which are considered in cones of set-valued function and also in spaces of vector-valued functions.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Korovkin-type approximation of set-valued continuous functions\",\"authors\":\"M. Campiti\",\"doi\":\"10.33205/CMA.863145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to some Korovkin approximation results in cones of Hausdorff continuous set-valued functions and in spaces of vector valued functions. Some classical results are exposed in order to give a more complete treatment of the subject. New contributions are concerned both with the general theory than in particular with the so-called convexity monotone operators, which are considered in cones of set-valued function and also in spaces of vector-valued functions.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/CMA.863145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/CMA.863145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Korovkin-type approximation of set-valued continuous functions
This paper is devoted to some Korovkin approximation results in cones of Hausdorff continuous set-valued functions and in spaces of vector valued functions. Some classical results are exposed in order to give a more complete treatment of the subject. New contributions are concerned both with the general theory than in particular with the so-called convexity monotone operators, which are considered in cones of set-valued function and also in spaces of vector-valued functions.