Navier-Stokes系统与梁耦合系统的Gevrey正则性:非平坦情况

Pub Date : 2019-10-16 DOI:10.1619/fesi.65.63
Mehdi Badra, Takéo Takahashi
{"title":"Navier-Stokes系统与梁耦合系统的Gevrey正则性:非平坦情况","authors":"Mehdi Badra, Takéo Takahashi","doi":"10.1619/fesi.65.63","DOIUrl":null,"url":null,"abstract":"We consider a bi-dimensional viscous incompressible fluid in interaction with a beam located at its boundary. We show the existence of strong solutions for this fluid-structure interaction system, extending a previous result where we supposed that the initial deformation of the beam was small. The main point of the proof consists in the study of the linearized system and in particular in proving that the corresponding semigroup is of Gevrey class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Gevrey Regularity for a System Coupling the Navier-Stokes System with a Beam: the Non-Flat Case\",\"authors\":\"Mehdi Badra, Takéo Takahashi\",\"doi\":\"10.1619/fesi.65.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a bi-dimensional viscous incompressible fluid in interaction with a beam located at its boundary. We show the existence of strong solutions for this fluid-structure interaction system, extending a previous result where we supposed that the initial deformation of the beam was small. The main point of the proof consists in the study of the linearized system and in particular in proving that the corresponding semigroup is of Gevrey class.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.65.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.65.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑一个二维粘性不可压缩流体与位于其边界的梁相互作用。我们证明了这种流体-结构相互作用系统的强解的存在,扩展了之前我们假设梁的初始变形很小的结果。证明的要点在于对线性化系统的研究,特别是证明相应的半群是Gevrey类的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gevrey Regularity for a System Coupling the Navier-Stokes System with a Beam: the Non-Flat Case
We consider a bi-dimensional viscous incompressible fluid in interaction with a beam located at its boundary. We show the existence of strong solutions for this fluid-structure interaction system, extending a previous result where we supposed that the initial deformation of the beam was small. The main point of the proof consists in the study of the linearized system and in particular in proving that the corresponding semigroup is of Gevrey class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信