阈值自回归模型中参数的固定精度估计

Pub Date : 2021-10-18 DOI:10.1007/s10463-021-00812-4
Victor V. Konev, Sergey E. Vorobeychikov
{"title":"阈值自回归模型中参数的固定精度估计","authors":"Victor V. Konev,&nbsp;Sergey E. Vorobeychikov","doi":"10.1007/s10463-021-00812-4","DOIUrl":null,"url":null,"abstract":"<div><p>For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed accuracy estimation of parameters in a threshold autoregressive model\",\"authors\":\"Victor V. Konev,&nbsp;Sergey E. Vorobeychikov\",\"doi\":\"10.1007/s10463-021-00812-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-021-00812-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00812-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于阈值自回归过程中的参数,本文提出了一种最小二乘估计的顺序修正方法,并为每个参数的数据采集设定了特定的停止规则。在正态残差的情况下,这些估计值在广泛的未知参数范围内完全正态分布。在这些估计的基础上,构造了一个固定大小的置信椭球,以规定的概率覆盖参数的真值。在误差分布不确定的i.i.d情况下,序列估计在遍历参数区域内任意紧集的参数中均匀渐近正态分布。通过模拟数据研究了估计的小样本行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fixed accuracy estimation of parameters in a threshold autoregressive model

For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信