储能系统利用电能稳定太阳能电站运行的技术经济评价

Q3 Energy
І.М. Buratynskyi
{"title":"储能系统利用电能稳定太阳能电站运行的技术经济评价","authors":"І.М. Buratynskyi","doi":"10.15407/techned2022.02.070","DOIUrl":null,"url":null,"abstract":"The article considers the problems that arise during the operation of high-power photovoltaic solar power plants as part of integrated power systems. The necessity of using energy storage systems to stabilize the operation of solar power plants is described and the calculated mathematical model of their joint operation is given. A study of the operation of a solar power plant with a fixed capacity of photovoltaic modules of 20 MW together with the energy storage system and determined the capacity of batteries needed to stabilize the power supply of electricity to the grid. For the day with the largest volumes of electricity production, in order to fully stabilize the operation of a solar power plant, it is necessary to release 41% of all generated electricity directly into the grid, and other volumes must be accumulated with subsequent discharge. Connecting batteries to a solar power plant allows to reduce the installed capacity of inverters from 18 to 3-5 MW, which reduces the cost of electricity production by 13-16%. According to the data on capital investment and operating costs during the entire period of operation solar power plants together with the energy storage system for the built in 2020 and 2040, the levelized cost of energy, storage and supply into the grid was determined. References 12, figures 5, table 1.","PeriodicalId":38557,"journal":{"name":"Technical Electrodynamics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TECHNICAL AND ECONOMIC EVALUATION OF ENERGY STORAGE SYSTEMS USE ELECTRICITYFOR STABILIZATION OF SOLAR POWER PLANT OPERATION\",\"authors\":\"І.М. Buratynskyi\",\"doi\":\"10.15407/techned2022.02.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article considers the problems that arise during the operation of high-power photovoltaic solar power plants as part of integrated power systems. The necessity of using energy storage systems to stabilize the operation of solar power plants is described and the calculated mathematical model of their joint operation is given. A study of the operation of a solar power plant with a fixed capacity of photovoltaic modules of 20 MW together with the energy storage system and determined the capacity of batteries needed to stabilize the power supply of electricity to the grid. For the day with the largest volumes of electricity production, in order to fully stabilize the operation of a solar power plant, it is necessary to release 41% of all generated electricity directly into the grid, and other volumes must be accumulated with subsequent discharge. Connecting batteries to a solar power plant allows to reduce the installed capacity of inverters from 18 to 3-5 MW, which reduces the cost of electricity production by 13-16%. According to the data on capital investment and operating costs during the entire period of operation solar power plants together with the energy storage system for the built in 2020 and 2040, the levelized cost of energy, storage and supply into the grid was determined. References 12, figures 5, table 1.\",\"PeriodicalId\":38557,\"journal\":{\"name\":\"Technical Electrodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Electrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/techned2022.02.070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Electrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/techned2022.02.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了作为集成电力系统一部分的大功率光伏太阳能发电厂在运行过程中出现的问题。阐述了利用储能系统稳定太阳能发电厂运行的必要性,并给出了其联合运行的计算数学模型。对固定容量为20兆瓦的光伏组件太阳能发电厂以及储能系统的运行进行了研究,并确定了稳定电网电力供应所需的电池容量。对于发电量最大的一天,为了完全稳定太阳能发电厂的运行,有必要将41%的发电量直接排入电网,其他电量必须随着后续放电而积累。将电池连接到太阳能发电厂可以将逆变器的装机容量从18兆瓦降低到3-5兆瓦,从而将电力生产成本降低13-16%。根据太阳能发电厂整个运营期的资本投资和运营成本数据,以及2020年和2040年建成的储能系统,确定了能源、储能和电网供应的平准化成本。参考文献12,图5,表1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TECHNICAL AND ECONOMIC EVALUATION OF ENERGY STORAGE SYSTEMS USE ELECTRICITYFOR STABILIZATION OF SOLAR POWER PLANT OPERATION
The article considers the problems that arise during the operation of high-power photovoltaic solar power plants as part of integrated power systems. The necessity of using energy storage systems to stabilize the operation of solar power plants is described and the calculated mathematical model of their joint operation is given. A study of the operation of a solar power plant with a fixed capacity of photovoltaic modules of 20 MW together with the energy storage system and determined the capacity of batteries needed to stabilize the power supply of electricity to the grid. For the day with the largest volumes of electricity production, in order to fully stabilize the operation of a solar power plant, it is necessary to release 41% of all generated electricity directly into the grid, and other volumes must be accumulated with subsequent discharge. Connecting batteries to a solar power plant allows to reduce the installed capacity of inverters from 18 to 3-5 MW, which reduces the cost of electricity production by 13-16%. According to the data on capital investment and operating costs during the entire period of operation solar power plants together with the energy storage system for the built in 2020 and 2040, the levelized cost of energy, storage and supply into the grid was determined. References 12, figures 5, table 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Electrodynamics
Technical Electrodynamics Energy-Energy Engineering and Power Technology
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信