M. F. Sulaima, N. Dahlan, Intan Azmira Abd. Razak, Z. H. Bohari, Amira Noor Farhanie Ali, Muhd Muhtazam Noor Din
{"title":"利用优化算法和自组织映射相结合的方法确定了提高电价方案下的最优负荷分布","authors":"M. F. Sulaima, N. Dahlan, Intan Azmira Abd. Razak, Z. H. Bohari, Amira Noor Farhanie Ali, Muhd Muhtazam Noor Din","doi":"10.11113/aej.v12.17324","DOIUrl":null,"url":null,"abstract":"Demand side management (DSM) has been conventionally adopted in many ways to efficiently managing the appropriate electricity loads. However, with the sophisticated design of the Time of Use (TOU) tariff to reflect electricity cost reduction, implementing proper Load Management (LM) strategies is challenging. To date, consumers still struggle to define a figure for the LM percentage to be involved in the demand response program. Due to that reason, this study proposes a method to find the best load profile reflecting the new tariff offered by using a combination of optimization algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Evolutionary PSO (EPSO), and Self-Organizing Mapping (SOM). The evaluation has been made to the manufacturing operation with the existing flat tariff to be transferred to the Enhanced Time of Use (ETOU). The test results show that the ability of the proposed combination method to define the optimal outputs such as energy consumption cost, maximum demand cost, load factor index, and building electricity economic responsive index. Meanwhile, the SOM algorithm has been used to classify the enormous numbers of those simulation results produced by algorithms while defining the best LM weightage. As the test results for the case study, it was found that the practical 6% LM weightage was able to reflect the optimal required load profile shifting to be applied by manufacturing operation. Thus, by determining the optimal load profile that suits the ETOU scheme, the consumers can enjoy cost benefits while supporting the demand response program concurrently.","PeriodicalId":36749,"journal":{"name":"ASEAN Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DETERMINATION OF THE OPTIMUM LOAD PROFILE UNDER ENHANCED OF USE TARIFF (ETOU) SCHEME USING COMBINATION OF OPTIMIZATION ALGORITHMS AND SELF ORGANIZING MAPPING\",\"authors\":\"M. F. Sulaima, N. Dahlan, Intan Azmira Abd. Razak, Z. H. Bohari, Amira Noor Farhanie Ali, Muhd Muhtazam Noor Din\",\"doi\":\"10.11113/aej.v12.17324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand side management (DSM) has been conventionally adopted in many ways to efficiently managing the appropriate electricity loads. However, with the sophisticated design of the Time of Use (TOU) tariff to reflect electricity cost reduction, implementing proper Load Management (LM) strategies is challenging. To date, consumers still struggle to define a figure for the LM percentage to be involved in the demand response program. Due to that reason, this study proposes a method to find the best load profile reflecting the new tariff offered by using a combination of optimization algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Evolutionary PSO (EPSO), and Self-Organizing Mapping (SOM). The evaluation has been made to the manufacturing operation with the existing flat tariff to be transferred to the Enhanced Time of Use (ETOU). The test results show that the ability of the proposed combination method to define the optimal outputs such as energy consumption cost, maximum demand cost, load factor index, and building electricity economic responsive index. Meanwhile, the SOM algorithm has been used to classify the enormous numbers of those simulation results produced by algorithms while defining the best LM weightage. As the test results for the case study, it was found that the practical 6% LM weightage was able to reflect the optimal required load profile shifting to be applied by manufacturing operation. Thus, by determining the optimal load profile that suits the ETOU scheme, the consumers can enjoy cost benefits while supporting the demand response program concurrently.\",\"PeriodicalId\":36749,\"journal\":{\"name\":\"ASEAN Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/aej.v12.17324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/aej.v12.17324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
DETERMINATION OF THE OPTIMUM LOAD PROFILE UNDER ENHANCED OF USE TARIFF (ETOU) SCHEME USING COMBINATION OF OPTIMIZATION ALGORITHMS AND SELF ORGANIZING MAPPING
Demand side management (DSM) has been conventionally adopted in many ways to efficiently managing the appropriate electricity loads. However, with the sophisticated design of the Time of Use (TOU) tariff to reflect electricity cost reduction, implementing proper Load Management (LM) strategies is challenging. To date, consumers still struggle to define a figure for the LM percentage to be involved in the demand response program. Due to that reason, this study proposes a method to find the best load profile reflecting the new tariff offered by using a combination of optimization algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Evolutionary PSO (EPSO), and Self-Organizing Mapping (SOM). The evaluation has been made to the manufacturing operation with the existing flat tariff to be transferred to the Enhanced Time of Use (ETOU). The test results show that the ability of the proposed combination method to define the optimal outputs such as energy consumption cost, maximum demand cost, load factor index, and building electricity economic responsive index. Meanwhile, the SOM algorithm has been used to classify the enormous numbers of those simulation results produced by algorithms while defining the best LM weightage. As the test results for the case study, it was found that the practical 6% LM weightage was able to reflect the optimal required load profile shifting to be applied by manufacturing operation. Thus, by determining the optimal load profile that suits the ETOU scheme, the consumers can enjoy cost benefits while supporting the demand response program concurrently.