在线性模型中测试欠识别,并应用于动态面板和资产定价模型

IF 9.9 3区 经济学 Q1 ECONOMICS
Frank Windmeijer
{"title":"在线性模型中测试欠识别,并应用于动态面板和资产定价模型","authors":"Frank Windmeijer","doi":"10.1016/j.jeconom.2021.03.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper develops the links between overidentification tests, underidentification tests, score tests and the Cragg and Donald (1993, 1997) and Kleibergen and Paap (2006) rank tests<span> in linear instrumental variable (IV) models. For the structural linear model </span></span><span><math><mrow><mi>y</mi><mo>=</mo><mi>X</mi><mi>β</mi><mo>+</mo><mi>u</mi></mrow></math></span><span>, with the endogenous explanatory variables partitioned as </span><span><math><mrow><mi>X</mi><mo>=</mo><mfenced><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mspace></mspace><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow></math></span>, this general framework shows that standard underidentification tests are tests for overidentification in an auxiliary linear model, <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>δ</mi><mo>+</mo><mi>ɛ</mi></mrow></math></span><span>, estimated by IV estimation methods using the same instruments as for the original model. This simple structure makes it possible to establish valid robust underidentification tests for linear IV models where these have not been proposed or used before, like clustered dynamic panel data models estimated by GMM. The framework also applies to tests for the rank of general parameter matrices. Invariant rank tests are based on the LIML or continuously updated GMM estimators of both structural and first-stage parameters. This insight leads to the proposal of new two-step invariant asymptotically efficient GMM estimators, and a new iterated GMM estimator that, if it converges, converges to the continuously updated GMM estimator.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105104"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing underidentification in linear models, with applications to dynamic panel and asset pricing models\",\"authors\":\"Frank Windmeijer\",\"doi\":\"10.1016/j.jeconom.2021.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper develops the links between overidentification tests, underidentification tests, score tests and the Cragg and Donald (1993, 1997) and Kleibergen and Paap (2006) rank tests<span> in linear instrumental variable (IV) models. For the structural linear model </span></span><span><math><mrow><mi>y</mi><mo>=</mo><mi>X</mi><mi>β</mi><mo>+</mo><mi>u</mi></mrow></math></span><span>, with the endogenous explanatory variables partitioned as </span><span><math><mrow><mi>X</mi><mo>=</mo><mfenced><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mspace></mspace><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow></math></span>, this general framework shows that standard underidentification tests are tests for overidentification in an auxiliary linear model, <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>δ</mi><mo>+</mo><mi>ɛ</mi></mrow></math></span><span>, estimated by IV estimation methods using the same instruments as for the original model. This simple structure makes it possible to establish valid robust underidentification tests for linear IV models where these have not been proposed or used before, like clustered dynamic panel data models estimated by GMM. The framework also applies to tests for the rank of general parameter matrices. Invariant rank tests are based on the LIML or continuously updated GMM estimators of both structural and first-stage parameters. This insight leads to the proposal of new two-step invariant asymptotically efficient GMM estimators, and a new iterated GMM estimator that, if it converges, converges to the continuously updated GMM estimator.</span></p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"240 2\",\"pages\":\"Article 105104\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030440762100097X\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440762100097X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文发展了线性工具变量(IV)模型中的过度识别检验、不足识别检验、得分检验以及 Cragg 和 Donald(1993,1997)和 Kleibergen 和 Paap(2006)等级检验之间的联系。对于结构线性模型 y=Xβ+u,内生解释变量划分为 X=x1X2,这个一般框架表明,标准的识别不足检验是在辅助线性模型 x1=X2δ+ɛ 中的过度识别检验,该辅助线性模型使用与原始模型相同的工具,通过 IV 估计方法进行估计。这种简单的结构使我们有可能为线性 IV 模型(如用 GMM 估计的聚类动态面板数据模型)建立有效的稳健欠识别检验。该框架也适用于一般参数矩阵的秩检验。不变秩检验基于结构参数和第一阶段参数的 LIML 或连续更新的 GMM 估计器。这一洞察力导致提出了新的两步不变渐进有效 GMM 估计器,以及新的迭代 GMM 估计器,如果它收敛,则收敛于连续更新的 GMM 估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing underidentification in linear models, with applications to dynamic panel and asset pricing models

This paper develops the links between overidentification tests, underidentification tests, score tests and the Cragg and Donald (1993, 1997) and Kleibergen and Paap (2006) rank tests in linear instrumental variable (IV) models. For the structural linear model y=Xβ+u, with the endogenous explanatory variables partitioned as X=x1X2, this general framework shows that standard underidentification tests are tests for overidentification in an auxiliary linear model, x1=X2δ+ɛ, estimated by IV estimation methods using the same instruments as for the original model. This simple structure makes it possible to establish valid robust underidentification tests for linear IV models where these have not been proposed or used before, like clustered dynamic panel data models estimated by GMM. The framework also applies to tests for the rank of general parameter matrices. Invariant rank tests are based on the LIML or continuously updated GMM estimators of both structural and first-stage parameters. This insight leads to the proposal of new two-step invariant asymptotically efficient GMM estimators, and a new iterated GMM estimator that, if it converges, converges to the continuously updated GMM estimator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信