乙醇和丁醇直接喷射火花点火喷雾的两相结构激光照明平面成像液滴尺寸分析

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, L. Zigan
{"title":"乙醇和丁醇直接喷射火花点火喷雾的两相结构激光照明平面成像液滴尺寸分析","authors":"M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, L. Zigan","doi":"10.1177/1756827718772496","DOIUrl":null,"url":null,"abstract":"This paper reports on the spray structure of the biofuels, ethanol, and butanol generated by a multihole direct-injection spark-ignition injector, which is studied in a constant volume chamber. The spray shape and structure are analyzed using two-phase structured laser illumination planar imaging where both laser-induced fluorescence and Mie-scattering light are recorded simultaneously for the extraction of instantaneous laser-induced fluorescence/Mie-scattering ratio images. Quantitative planar measurements of the droplet Sauter mean diameter are conducted, using calibration data from phase-Doppler anemometry. The resulting Sauter mean diameters are presented for ethanol and butanol at various fuel temperatures at different times after the start of injection. It is found that an increase in fuel temperature results in a faster atomization and higher evaporation rate, which leads to reduced spray tip penetration and smaller droplet Sauter mean diameter. At equivalent conditions, butanol consistently showed larger spray tip penetration in comparison to ethanol. This behavior is due to the higher surface tension and viscosity of butanol resulting in the formation of larger droplets and larger Sauter mean diameters in the whole spray region. Finally, the butanol injection also shows larger cyclic variations in the spray shape from injection to injection which is explained by the internal nozzle flow that is influenced by larger fuel viscosity as well. The Sauter mean diameter distribution is also compared to phase-Doppler anemometry data showing good agreement and an uncertainty analysis of the structured laser illumination planar imaging-laser-induced fluorescence/Mie-scattering technique for planar droplet sizing in direct-injection spark-ignition sprays is presented.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827718772496","citationCount":"18","resultStr":"{\"title\":\"Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing\",\"authors\":\"M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, L. Zigan\",\"doi\":\"10.1177/1756827718772496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the spray structure of the biofuels, ethanol, and butanol generated by a multihole direct-injection spark-ignition injector, which is studied in a constant volume chamber. The spray shape and structure are analyzed using two-phase structured laser illumination planar imaging where both laser-induced fluorescence and Mie-scattering light are recorded simultaneously for the extraction of instantaneous laser-induced fluorescence/Mie-scattering ratio images. Quantitative planar measurements of the droplet Sauter mean diameter are conducted, using calibration data from phase-Doppler anemometry. The resulting Sauter mean diameters are presented for ethanol and butanol at various fuel temperatures at different times after the start of injection. It is found that an increase in fuel temperature results in a faster atomization and higher evaporation rate, which leads to reduced spray tip penetration and smaller droplet Sauter mean diameter. At equivalent conditions, butanol consistently showed larger spray tip penetration in comparison to ethanol. This behavior is due to the higher surface tension and viscosity of butanol resulting in the formation of larger droplets and larger Sauter mean diameters in the whole spray region. Finally, the butanol injection also shows larger cyclic variations in the spray shape from injection to injection which is explained by the internal nozzle flow that is influenced by larger fuel viscosity as well. The Sauter mean diameter distribution is also compared to phase-Doppler anemometry data showing good agreement and an uncertainty analysis of the structured laser illumination planar imaging-laser-induced fluorescence/Mie-scattering technique for planar droplet sizing in direct-injection spark-ignition sprays is presented.\",\"PeriodicalId\":49046,\"journal\":{\"name\":\"International Journal of Spray and Combustion Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756827718772496\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Spray and Combustion Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756827718772496\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756827718772496","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 18

摘要

本文在定容室中研究了多孔直喷式火花点火喷射器产生的生物燃料、乙醇和丁醇的喷雾结构。采用两相结构激光照射平面成像技术,同时记录激光诱导荧光和米氏散射光,分析喷雾的形状和结构,提取瞬时激光诱导荧光/米氏散射比图像。利用相位多普勒风速法的校准数据,对液滴的平均直径进行了定量的平面测量。给出了乙醇和丁醇在喷射开始后不同时间、不同燃料温度下的索氏平均直径。研究发现,燃料温度升高,雾化速度加快,蒸发速率加快,喷嘴穿透度减小,液滴平均直径减小。在同等条件下,丁醇始终表现出比乙醇更大的喷雾尖端渗透。这种行为是由于丁醇的表面张力和粘度较高,导致整个喷雾区域形成更大的液滴和更大的Sauter平均直径。最后,丁醇喷射也表现出较大的喷射形状循环变化,这可以解释为喷嘴内部流量也受到较大的燃料粘度的影响。将索特平均直径分布与相位多普勒风速测量数据进行了比较,结果吻合较好,并对结构激光照明平面成像-激光诱导荧光/米散射技术用于直接喷射式火花点火喷雾中平面液滴尺寸的不确定度进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing
This paper reports on the spray structure of the biofuels, ethanol, and butanol generated by a multihole direct-injection spark-ignition injector, which is studied in a constant volume chamber. The spray shape and structure are analyzed using two-phase structured laser illumination planar imaging where both laser-induced fluorescence and Mie-scattering light are recorded simultaneously for the extraction of instantaneous laser-induced fluorescence/Mie-scattering ratio images. Quantitative planar measurements of the droplet Sauter mean diameter are conducted, using calibration data from phase-Doppler anemometry. The resulting Sauter mean diameters are presented for ethanol and butanol at various fuel temperatures at different times after the start of injection. It is found that an increase in fuel temperature results in a faster atomization and higher evaporation rate, which leads to reduced spray tip penetration and smaller droplet Sauter mean diameter. At equivalent conditions, butanol consistently showed larger spray tip penetration in comparison to ethanol. This behavior is due to the higher surface tension and viscosity of butanol resulting in the formation of larger droplets and larger Sauter mean diameters in the whole spray region. Finally, the butanol injection also shows larger cyclic variations in the spray shape from injection to injection which is explained by the internal nozzle flow that is influenced by larger fuel viscosity as well. The Sauter mean diameter distribution is also compared to phase-Doppler anemometry data showing good agreement and an uncertainty analysis of the structured laser illumination planar imaging-laser-induced fluorescence/Mie-scattering technique for planar droplet sizing in direct-injection spark-ignition sprays is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Spray and Combustion Dynamics
International Journal of Spray and Combustion Dynamics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.20
自引率
12.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信