基于Landsat和MODIS的地表温度时空变化——以南非Tshwane市为例

IF 0.3 Q4 REMOTE SENSING
J. Magidi, F. Ahmed
{"title":"基于Landsat和MODIS的地表温度时空变化——以南非Tshwane市为例","authors":"J. Magidi, F. Ahmed","doi":"10.4314/sajg.v9i2.25","DOIUrl":null,"url":null,"abstract":"Urbanisation is accelerating urban land use dynamics and this has a significant impact on land surface temperature (LST). Impervious surfaces and increase in air pollution has led to the increase in land surface temperature. This study reports on the use of geospatial technologies to monitor and quantify changes in LST using remotely sensed data in the City of Tshwane. Land surface temperature was retrieved using the winter and summer Landsat datasets for 1997 and 2015 and the MODIS data from 2000 to 2015. Land surface temperature was extracted using emissivity and satellite temperature as input parameters. The spatial and temporal variations in the LST were retrieved to show the effects of land cover change on LST. Change in LST was also analysed on different land cover types using transects across the study area. The study revealed an increase in land surface temperature between the years. It also showed that impervious surfaces had a higher LST compared to the non-impervious surfaces. The results revealed variations in LST between non-cropped and cropped agricultural areas, where the former had higher LST than the latter. Temporal trends revealed a notable increase in LST in the urban areas and there were some seasonal variations in LST with high LST values in summer and low values in winter. Cross-section analysis along transects revealed spatio-temporal thermal variations across different land cover types.","PeriodicalId":43854,"journal":{"name":"South African Journal of Geomatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-temporal variations of land surface temperature using Landsat and MODIS: case study of the City of Tshwane, South Africa\",\"authors\":\"J. Magidi, F. Ahmed\",\"doi\":\"10.4314/sajg.v9i2.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urbanisation is accelerating urban land use dynamics and this has a significant impact on land surface temperature (LST). Impervious surfaces and increase in air pollution has led to the increase in land surface temperature. This study reports on the use of geospatial technologies to monitor and quantify changes in LST using remotely sensed data in the City of Tshwane. Land surface temperature was retrieved using the winter and summer Landsat datasets for 1997 and 2015 and the MODIS data from 2000 to 2015. Land surface temperature was extracted using emissivity and satellite temperature as input parameters. The spatial and temporal variations in the LST were retrieved to show the effects of land cover change on LST. Change in LST was also analysed on different land cover types using transects across the study area. The study revealed an increase in land surface temperature between the years. It also showed that impervious surfaces had a higher LST compared to the non-impervious surfaces. The results revealed variations in LST between non-cropped and cropped agricultural areas, where the former had higher LST than the latter. Temporal trends revealed a notable increase in LST in the urban areas and there were some seasonal variations in LST with high LST values in summer and low values in winter. Cross-section analysis along transects revealed spatio-temporal thermal variations across different land cover types.\",\"PeriodicalId\":43854,\"journal\":{\"name\":\"South African Journal of Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/sajg.v9i2.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/sajg.v9i2.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

摘要

城市化正在加速城市土地利用动态,这对地表温度(LST)产生了重大影响。不透水的地表和空气污染的增加导致了地表温度的升高。这项研究报告了使用地理空间技术,利用茨瓦内市的遥感数据监测和量化LST的变化。使用1997年和2015年的冬季和夏季陆地卫星数据集以及2000年至2015年的MODIS数据检索地表温度。使用发射率和卫星温度作为输入参数提取地表温度。反演了地表温度的空间和时间变化,以显示土地覆盖变化对地表温度的影响。还使用整个研究区域的样带分析了不同土地覆盖类型的LST变化。这项研究显示,这些年来陆地表面温度有所上升。研究还表明,与非防渗表面相比,防渗表面具有更高的LST。结果表明,非作物和作物农业区的地表温度存在差异,前者的地表温度高于后者。时间趋势显示,城市地区的LST显著增加,并且LST存在一些季节性变化,夏季LST值高,冬季LST值低。横断面分析揭示了不同土地覆盖类型的时空热变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal variations of land surface temperature using Landsat and MODIS: case study of the City of Tshwane, South Africa
Urbanisation is accelerating urban land use dynamics and this has a significant impact on land surface temperature (LST). Impervious surfaces and increase in air pollution has led to the increase in land surface temperature. This study reports on the use of geospatial technologies to monitor and quantify changes in LST using remotely sensed data in the City of Tshwane. Land surface temperature was retrieved using the winter and summer Landsat datasets for 1997 and 2015 and the MODIS data from 2000 to 2015. Land surface temperature was extracted using emissivity and satellite temperature as input parameters. The spatial and temporal variations in the LST were retrieved to show the effects of land cover change on LST. Change in LST was also analysed on different land cover types using transects across the study area. The study revealed an increase in land surface temperature between the years. It also showed that impervious surfaces had a higher LST compared to the non-impervious surfaces. The results revealed variations in LST between non-cropped and cropped agricultural areas, where the former had higher LST than the latter. Temporal trends revealed a notable increase in LST in the urban areas and there were some seasonal variations in LST with high LST values in summer and low values in winter. Cross-section analysis along transects revealed spatio-temporal thermal variations across different land cover types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
82
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信