{"title":"用耗散能量法评价聚烯烃增强沥青胶的疲劳性能","authors":"C. Roman, M. Delgado, M. García-Morales","doi":"10.3989/mc.2020.09319","DOIUrl":null,"url":null,"abstract":"Polymers are known to improve the fatigue resistance of sphalt mastics. However, undesirable results can be obtained if the polymer is not successfully integrated into the bitumen binder. The goal of this work is to evaluate the effect of the addition of three selected polyolefins on their mastic’s fatigue performance. Low and high density polyethylenes (LDPE and HDPE) and polypropylene (PP) were chosen and used at the concentration of 4 wt.%. A dissipated energy approach was used in order to analyze the fatigue resistance, at 25 oC, of the three composites studied. Dynamic time sweeps at and above the linear viscoelastic threshold were carried out. Based on that, the results demonstrated a better improvement when the LDPE was considered. For that binder, fluorescence optical microscopy observations at 25 oC provided morphological evidence of a more homogeneous bitumen-polymer distribution which could be behind the improved fatigue behavior.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach\",\"authors\":\"C. Roman, M. Delgado, M. García-Morales\",\"doi\":\"10.3989/mc.2020.09319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymers are known to improve the fatigue resistance of sphalt mastics. However, undesirable results can be obtained if the polymer is not successfully integrated into the bitumen binder. The goal of this work is to evaluate the effect of the addition of three selected polyolefins on their mastic’s fatigue performance. Low and high density polyethylenes (LDPE and HDPE) and polypropylene (PP) were chosen and used at the concentration of 4 wt.%. A dissipated energy approach was used in order to analyze the fatigue resistance, at 25 oC, of the three composites studied. Dynamic time sweeps at and above the linear viscoelastic threshold were carried out. Based on that, the results demonstrated a better improvement when the LDPE was considered. For that binder, fluorescence optical microscopy observations at 25 oC provided morphological evidence of a more homogeneous bitumen-polymer distribution which could be behind the improved fatigue behavior.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3989/mc.2020.09319\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/mc.2020.09319","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach
Polymers are known to improve the fatigue resistance of sphalt mastics. However, undesirable results can be obtained if the polymer is not successfully integrated into the bitumen binder. The goal of this work is to evaluate the effect of the addition of three selected polyolefins on their mastic’s fatigue performance. Low and high density polyethylenes (LDPE and HDPE) and polypropylene (PP) were chosen and used at the concentration of 4 wt.%. A dissipated energy approach was used in order to analyze the fatigue resistance, at 25 oC, of the three composites studied. Dynamic time sweeps at and above the linear viscoelastic threshold were carried out. Based on that, the results demonstrated a better improvement when the LDPE was considered. For that binder, fluorescence optical microscopy observations at 25 oC provided morphological evidence of a more homogeneous bitumen-polymer distribution which could be behind the improved fatigue behavior.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.