从pp波到伽利略时空

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
J. Figueroa-O’Farrill, Ross Grassie, Stefan Prohazka
{"title":"从pp波到伽利略时空","authors":"J. Figueroa-O’Farrill, Ross Grassie, Stefan Prohazka","doi":"10.3842/SIGMA.2023.035","DOIUrl":null,"url":null,"abstract":"We exhibit all spatially isotropic homogeneous Galilean spacetimes of dimension (n+1)>=4, including the novel torsional ones, as null reductions of homogeneous pp-wave spacetimes. We also show that the pp-waves are sourced by pure radiation fields and analyse their global properties.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"From pp-Waves to Galilean Spacetimes\",\"authors\":\"J. Figueroa-O’Farrill, Ross Grassie, Stefan Prohazka\",\"doi\":\"10.3842/SIGMA.2023.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit all spatially isotropic homogeneous Galilean spacetimes of dimension (n+1)>=4, including the novel torsional ones, as null reductions of homogeneous pp-wave spacetimes. We also show that the pp-waves are sourced by pure radiation fields and analyse their global properties.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.035\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.035","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们展示了所有维度(n+1)>=4的空间各向同性齐次伽利略时空,包括新的扭转时空,作为齐次pp波时空的零约简。我们还证明了pp波是由纯辐射场产生的,并分析了它们的全局性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From pp-Waves to Galilean Spacetimes
We exhibit all spatially isotropic homogeneous Galilean spacetimes of dimension (n+1)>=4, including the novel torsional ones, as null reductions of homogeneous pp-wave spacetimes. We also show that the pp-waves are sourced by pure radiation fields and analyse their global properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信