{"title":"利用不动点定理研究三叉Banach代数三叉不定导数的稳定性","authors":"Mehdi Dehghanian, Choonkill Park, Y. Sayyari","doi":"10.56754/0719-0646.2502.273","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\\alpha,\\beta)$-functional inequality: \\begin{align*} &\\Vert \\mathcal{F}(x+y+z)-\\mathcal{F}(x+z)-\\mathcal{F}(y-x+z)-\\mathcal{F}(x-z)\\Vert \\nonumber\\\\ &\\leq \\Vert \\alpha (\\mathcal{F}(x+y-z)+\\mathcal{F}(x-z)-\\mathcal{F}(y))\\Vert + \\Vert \\beta (\\mathcal{F}(x-z)\\\\ &+\\mathcal{F}(x)-\\mathcal{F}(z))\\Vert \\end{align*} where $\\alpha$ and $\\beta$ are fixed nonzero complex numbers with $\\vert\\alpha \\vert +\\vert \\beta \\vert<2$ by using the fixed point method.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem\",\"authors\":\"Mehdi Dehghanian, Choonkill Park, Y. Sayyari\",\"doi\":\"10.56754/0719-0646.2502.273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\\\\alpha,\\\\beta)$-functional inequality: \\\\begin{align*} &\\\\Vert \\\\mathcal{F}(x+y+z)-\\\\mathcal{F}(x+z)-\\\\mathcal{F}(y-x+z)-\\\\mathcal{F}(x-z)\\\\Vert \\\\nonumber\\\\\\\\ &\\\\leq \\\\Vert \\\\alpha (\\\\mathcal{F}(x+y-z)+\\\\mathcal{F}(x-z)-\\\\mathcal{F}(y))\\\\Vert + \\\\Vert \\\\beta (\\\\mathcal{F}(x-z)\\\\\\\\ &+\\\\mathcal{F}(x)-\\\\mathcal{F}(z))\\\\Vert \\\\end{align*} where $\\\\alpha$ and $\\\\beta$ are fixed nonzero complex numbers with $\\\\vert\\\\alpha \\\\vert +\\\\vert \\\\beta \\\\vert<2$ by using the fixed point method.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2502.273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem
In this paper, we introduce the concept of ternary antiderivation on ternary Banach algebras and investigate the stability of ternary antiderivation in ternary Banach algebras, associated to the $(\alpha,\beta)$-functional inequality: \begin{align*} &\Vert \mathcal{F}(x+y+z)-\mathcal{F}(x+z)-\mathcal{F}(y-x+z)-\mathcal{F}(x-z)\Vert \nonumber\\ &\leq \Vert \alpha (\mathcal{F}(x+y-z)+\mathcal{F}(x-z)-\mathcal{F}(y))\Vert + \Vert \beta (\mathcal{F}(x-z)\\ &+\mathcal{F}(x)-\mathcal{F}(z))\Vert \end{align*} where $\alpha$ and $\beta$ are fixed nonzero complex numbers with $\vert\alpha \vert +\vert \beta \vert<2$ by using the fixed point method.