关于图的拉普拉斯能量的一些下界的注释

IF 0.6 Q3 MATHEMATICS
I. Milovanovic, M. Matejic, P. Milošević, E. Milovanovic, Akbar Ali
{"title":"关于图的拉普拉斯能量的一些下界的注释","authors":"I. Milovanovic, M. Matejic, P. Milošević, E. Milovanovic, Akbar Ali","doi":"10.22108/TOC.2019.115269.1616","DOIUrl":null,"url":null,"abstract":"‎‎‎For a simple connected graph $G$ of order $n$ and size $m$‎, ‎the Laplacian energy of $G$ is defined as‎ ‎$LE(G)=sum_{i=1}^n|mu_i-frac{2m}{n}|$ where $mu_1‎, ‎mu_2,ldots‎,‎‎mu_{n-1}‎, ‎mu_{n}$‎ ‎are the Laplacian eigenvalues of $G$ satisfying $mu_1ge mu_2gecdots ge mu_{n-1}>‎ ‎mu_{n}=0$‎. ‎In this note‎, ‎some new lower bounds on the graph invariant $LE(G)$ are derived‎. ‎The obtained results are compared with some already known lower bounds of $LE(G)$‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"13-19"},"PeriodicalIF":0.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on some lower bounds of the Laplacian energy of a graph\",\"authors\":\"I. Milovanovic, M. Matejic, P. Milošević, E. Milovanovic, Akbar Ali\",\"doi\":\"10.22108/TOC.2019.115269.1616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎‎‎For a simple connected graph $G$ of order $n$ and size $m$‎, ‎the Laplacian energy of $G$ is defined as‎ ‎$LE(G)=sum_{i=1}^n|mu_i-frac{2m}{n}|$ where $mu_1‎, ‎mu_2,ldots‎,‎‎mu_{n-1}‎, ‎mu_{n}$‎ ‎are the Laplacian eigenvalues of $G$ satisfying $mu_1ge mu_2gecdots ge mu_{n-1}>‎ ‎mu_{n}=0$‎. ‎In this note‎, ‎some new lower bounds on the graph invariant $LE(G)$ are derived‎. ‎The obtained results are compared with some already known lower bounds of $LE(G)$‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"13-19\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.115269.1616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.115269.1616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

‎‎‎对于阶为$n$、大小为$m的简单连通图$G$$‎, ‎$G$的拉普拉斯能量定义为‎ ‎$LE(G)=sum_{i=1}^n|mu_i-frac{2m}{n}|$其中$mu_1‎, ‎mu_2,ldots‎,‎‎μ{n-1}‎, ‎μ{n}$‎ ‎是$G$满足$mu_1ge mu_2gecdots ge mu_{n-1}>的拉普拉斯特征值‎ ‎mu_{n}=0$‎. ‎在本注释中‎, ‎导出了图不变量$LE(G)$的一些新的下界‎. ‎将所获得的结果与$LE(G)的一些已知下界进行比较$‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on some lower bounds of the Laplacian energy of a graph
‎‎‎For a simple connected graph $G$ of order $n$ and size $m$‎, ‎the Laplacian energy of $G$ is defined as‎ ‎$LE(G)=sum_{i=1}^n|mu_i-frac{2m}{n}|$ where $mu_1‎, ‎mu_2,ldots‎,‎‎mu_{n-1}‎, ‎mu_{n}$‎ ‎are the Laplacian eigenvalues of $G$ satisfying $mu_1ge mu_2gecdots ge mu_{n-1}>‎ ‎mu_{n}=0$‎. ‎In this note‎, ‎some new lower bounds on the graph invariant $LE(G)$ are derived‎. ‎The obtained results are compared with some already known lower bounds of $LE(G)$‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信