{"title":"具有圆形界面绝缘体的双材料中的分数双相滞后非傅立叶传热","authors":"Xue-yang Zhang, Yingsi Hu, Xian‐Fang Li","doi":"10.2514/1.t6772","DOIUrl":null,"url":null,"abstract":"The transient temperature response of a bimaterial with a circular insulated interface region is studied under sudden heating or cooling. The time-fractional dual-phase-lag heat conduction model is adopted to simulate the non-Fourier effect. The problem is reduced to an initial-boundary value problem. The Laplace transform is applied to convert the problem to a mixed boundary value problem, and then the Hankel transform reduces it to a Fredholm integral equation. Special situations for asymptotic thermal behavior near the insulated circular edge and for the steady-state cases are discussed, respectively. The dynamic intensity factors of heat flux and temperature gradient near the insulated circular edge are computed numerically through Stehfest’s Laplace inversion transform technique. The influences of fractional order and relaxation times on the instantaneous temperature change are analyzed. The exact solution of temperature fields for the steady-state case is derived and displayed graphically. The wave-like diffusion behavior of the fractional dual-phase-lag model is interpreted.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Dual-Phase-Lag Non-Fourier Heat Transfer in a Bimaterial with a Circular Interface Insulator\",\"authors\":\"Xue-yang Zhang, Yingsi Hu, Xian‐Fang Li\",\"doi\":\"10.2514/1.t6772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transient temperature response of a bimaterial with a circular insulated interface region is studied under sudden heating or cooling. The time-fractional dual-phase-lag heat conduction model is adopted to simulate the non-Fourier effect. The problem is reduced to an initial-boundary value problem. The Laplace transform is applied to convert the problem to a mixed boundary value problem, and then the Hankel transform reduces it to a Fredholm integral equation. Special situations for asymptotic thermal behavior near the insulated circular edge and for the steady-state cases are discussed, respectively. The dynamic intensity factors of heat flux and temperature gradient near the insulated circular edge are computed numerically through Stehfest’s Laplace inversion transform technique. The influences of fractional order and relaxation times on the instantaneous temperature change are analyzed. The exact solution of temperature fields for the steady-state case is derived and displayed graphically. The wave-like diffusion behavior of the fractional dual-phase-lag model is interpreted.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6772\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6772","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fractional Dual-Phase-Lag Non-Fourier Heat Transfer in a Bimaterial with a Circular Interface Insulator
The transient temperature response of a bimaterial with a circular insulated interface region is studied under sudden heating or cooling. The time-fractional dual-phase-lag heat conduction model is adopted to simulate the non-Fourier effect. The problem is reduced to an initial-boundary value problem. The Laplace transform is applied to convert the problem to a mixed boundary value problem, and then the Hankel transform reduces it to a Fredholm integral equation. Special situations for asymptotic thermal behavior near the insulated circular edge and for the steady-state cases are discussed, respectively. The dynamic intensity factors of heat flux and temperature gradient near the insulated circular edge are computed numerically through Stehfest’s Laplace inversion transform technique. The influences of fractional order and relaxation times on the instantaneous temperature change are analyzed. The exact solution of temperature fields for the steady-state case is derived and displayed graphically. The wave-like diffusion behavior of the fractional dual-phase-lag model is interpreted.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.