关于元素为[−a, a]的单位下三角矩阵的最小奇异值

IF 0.8 Q2 MATHEMATICS
E. Altinisik
{"title":"关于元素为[−a, a]的单位下三角矩阵的最小奇异值","authors":"E. Altinisik","doi":"10.1515/spma-2020-0139","DOIUrl":null,"url":null,"abstract":"Abstract Given a real number a ≥ 1, let Kn(a) be the set of all n × n unit lower triangular matrices with each element in the interval [−a, a]. Denoting by λn(·) the smallest eigenvalue of a given matrix, let cn(a) = min {λ n(YYT) : Y ∈ Kn(a)}. Then cn(a)\\sqrt {{c_n}\\left( a \\right)} is the smallest singular value in Kn(a). We find all minimizing matrices. Moreover, we study the asymptotic behavior of cn(a) as n → ∞. Finally, replacing [−a, a] with [a, b], a ≤ 0 < b, we present an open question: Can our results be generalized in this extension?","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"297 - 304"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0139","citationCount":"0","resultStr":"{\"title\":\"On the smallest singular value in the class of unit lower triangular matrices with entries in [−a, a]\",\"authors\":\"E. Altinisik\",\"doi\":\"10.1515/spma-2020-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a real number a ≥ 1, let Kn(a) be the set of all n × n unit lower triangular matrices with each element in the interval [−a, a]. Denoting by λn(·) the smallest eigenvalue of a given matrix, let cn(a) = min {λ n(YYT) : Y ∈ Kn(a)}. Then cn(a)\\\\sqrt {{c_n}\\\\left( a \\\\right)} is the smallest singular value in Kn(a). We find all minimizing matrices. Moreover, we study the asymptotic behavior of cn(a) as n → ∞. Finally, replacing [−a, a] with [a, b], a ≤ 0 < b, we present an open question: Can our results be generalized in this extension?\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"9 1\",\"pages\":\"297 - 304\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要给定实数a≥1,设Kn(a)是区间[−a,a]内所有n×n个单位下三角矩阵的集合。用λn(·)表示给定矩阵的最小特征值,设cn(a)=min{λn(YYT):Y∈Kn(a)}。则cn(a)\sqrt{c_n}\left(a\right)}是Kn(a)中最小的奇异值。我们找到所有最小化矩阵。此外,我们还研究了cn(a)作为n的渐近性态→ ∞. 最后,将[−a,a]替换为[a,b],a≤0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On the smallest singular value in the class of unit lower triangular matrices with entries in [−a, a]
Abstract Given a real number a ≥ 1, let Kn(a) be the set of all n × n unit lower triangular matrices with each element in the interval [−a, a]. Denoting by λn(·) the smallest eigenvalue of a given matrix, let cn(a) = min {λ n(YYT) : Y ∈ Kn(a)}. Then cn(a)\sqrt {{c_n}\left( a \right)} is the smallest singular value in Kn(a). We find all minimizing matrices. Moreover, we study the asymptotic behavior of cn(a) as n → ∞. Finally, replacing [−a, a] with [a, b], a ≤ 0 < b, we present an open question: Can our results be generalized in this extension?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信