噻唑类碳酰肼衍生物作为α-淀粉酶抑制剂及其分子对接研究

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
M. Taha, Maryam Irshad, Syahrul Imran, F. Rahim, Manikandan Selvaraj, N. Almandil, A. Mosaddik, Sridevi Chigurupati, Faisal Nawaz, N. Ismail, M. Ibrahim
{"title":"噻唑类碳酰肼衍生物作为α-淀粉酶抑制剂及其分子对接研究","authors":"M. Taha, Maryam Irshad, Syahrul Imran, F. Rahim, Manikandan Selvaraj, N. Almandil, A. Mosaddik, Sridevi Chigurupati, Faisal Nawaz, N. Ismail, M. Ibrahim","doi":"10.1155/2019/7502347","DOIUrl":null,"url":null,"abstract":"In this study we are going to present thiazole based carbohydrazide in search of potent antidiabetic agent as α-amylase inhibitors. Thiazole based carbohydrazide derivatives 1-25 have been synthesized, characterized by 1HNMR, 13CNMR, and EI-MS, and evaluated for α-amylase inhibition. Except compound 11 all analogs showed α-amylase inhibitory activity with IC50 values from 1.709 ± 0.12 to 3.049 ± 0.25 μM against the standard acarbose (IC50 = 1.637 ± 0.153 μM). Compounds 1, 10, 14, and 20 exhibited outstanding inhibitory potential with IC50 value 1.763 ± 0.03, 1.747 ± 0.20, 1.709 ± 0.12, and 1.948 ± 0.23 μM, respectively, compared with the standard acarbose. Structure activity relationships have been established for the active compounds. To get an idea about the binding interaction of the compounds, molecular docking studies were done.","PeriodicalId":12816,"journal":{"name":"Heteroatom Chemistry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7502347","citationCount":"17","resultStr":"{\"title\":\"Thiazole Based Carbohydrazide Derivatives as α-Amylase Inhibitor and Their Molecular Docking Study\",\"authors\":\"M. Taha, Maryam Irshad, Syahrul Imran, F. Rahim, Manikandan Selvaraj, N. Almandil, A. Mosaddik, Sridevi Chigurupati, Faisal Nawaz, N. Ismail, M. Ibrahim\",\"doi\":\"10.1155/2019/7502347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we are going to present thiazole based carbohydrazide in search of potent antidiabetic agent as α-amylase inhibitors. Thiazole based carbohydrazide derivatives 1-25 have been synthesized, characterized by 1HNMR, 13CNMR, and EI-MS, and evaluated for α-amylase inhibition. Except compound 11 all analogs showed α-amylase inhibitory activity with IC50 values from 1.709 ± 0.12 to 3.049 ± 0.25 μM against the standard acarbose (IC50 = 1.637 ± 0.153 μM). Compounds 1, 10, 14, and 20 exhibited outstanding inhibitory potential with IC50 value 1.763 ± 0.03, 1.747 ± 0.20, 1.709 ± 0.12, and 1.948 ± 0.23 μM, respectively, compared with the standard acarbose. Structure activity relationships have been established for the active compounds. To get an idea about the binding interaction of the compounds, molecular docking studies were done.\",\"PeriodicalId\":12816,\"journal\":{\"name\":\"Heteroatom Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/7502347\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heteroatom Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/7502347\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heteroatom Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2019/7502347","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

摘要

在这项研究中,我们将提出基于噻唑的碳酰肼,以寻找作为α-淀粉酶抑制剂的强效抗糖尿病药物。合成了噻唑基碳酰肼衍生物1-25,通过1HNMR、13CNMR和EI-MS进行了表征,并评估了其对α-淀粉酶的抑制作用。除化合物11外,所有类似物均显示出α-淀粉酶抑制活性,对标准阿卡波糖的IC50值为1.709±0.12至3.049±0.25μM(IC50=1.637±0.153μM)。与标准阿卡波糖相比,化合物1、10、14和20表现出显著的抑制潜力,IC50值分别为1.763±0.03、1.747±0.20、1.709±0.12和1.948±0.23μM。已经建立了活性化合物的结构-活性关系。为了了解这些化合物的结合相互作用,进行了分子对接研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thiazole Based Carbohydrazide Derivatives as α-Amylase Inhibitor and Their Molecular Docking Study
In this study we are going to present thiazole based carbohydrazide in search of potent antidiabetic agent as α-amylase inhibitors. Thiazole based carbohydrazide derivatives 1-25 have been synthesized, characterized by 1HNMR, 13CNMR, and EI-MS, and evaluated for α-amylase inhibition. Except compound 11 all analogs showed α-amylase inhibitory activity with IC50 values from 1.709 ± 0.12 to 3.049 ± 0.25 μM against the standard acarbose (IC50 = 1.637 ± 0.153 μM). Compounds 1, 10, 14, and 20 exhibited outstanding inhibitory potential with IC50 value 1.763 ± 0.03, 1.747 ± 0.20, 1.709 ± 0.12, and 1.948 ± 0.23 μM, respectively, compared with the standard acarbose. Structure activity relationships have been established for the active compounds. To get an idea about the binding interaction of the compounds, molecular docking studies were done.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heteroatom Chemistry
Heteroatom Chemistry 化学-化学综合
CiteScore
1.20
自引率
0.00%
发文量
5
审稿时长
6 months
期刊介绍: Heteroatom Chemistry brings together a broad, interdisciplinary group of chemists who work with compounds containing main-group elements of groups 13 through 17 of the Periodic Table, and certain other related elements. The fundamental reactivity under investigation should, in all cases, be concentrated about the heteroatoms. It does not matter whether the compounds being studied are acyclic or cyclic; saturated or unsaturated; monomeric, polymeric or solid state in nature; inorganic, organic, or naturally occurring, so long as the heteroatom is playing an essential role. Computational, experimental, and combined studies are equally welcome. Subject areas include (but are by no means limited to): -Reactivity about heteroatoms for accessing new products or synthetic pathways -Unusual valency main-group element compounds and their properties -Highly strained (e.g. bridged) main-group element compounds and their properties -Photochemical or thermal cleavage of heteroatom bonds and the resulting reactivity -Uncommon and structurally interesting heteroatom-containing species (including those containing multiple bonds and catenation) -Stereochemistry of compounds due to the presence of heteroatoms -Neighboring group effects of heteroatoms on the properties of compounds -Main-group element compounds as analogues of transition metal compounds -Variations and new results from established and named reactions (including Wittig, Kabachnik–Fields, Pudovik, Arbuzov, Hirao, and Mitsunobu) -Catalysis and green syntheses enabled by heteroatoms and their chemistry -Applications of compounds where the heteroatom plays a critical role. In addition to original research articles on heteroatom chemistry, the journal welcomes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信