一个与分数阶微分方程相关的具有先导的意见形成模型的指数稳定性

IF 1.4 Q2 MATHEMATICS, APPLIED
Dussadee Somjaiwang, Parinya Sa Ngiamsunthorn
{"title":"一个与分数阶微分方程相关的具有先导的意见形成模型的指数稳定性","authors":"Dussadee Somjaiwang, Parinya Sa Ngiamsunthorn","doi":"10.1155/2022/3973157","DOIUrl":null,"url":null,"abstract":"This paper studies the dynamics of an opinion formation model with a leader associated with a system of fractional differential equations. We applied the concept of \n \n α\n \n -exponential stability and the uniqueness of equilibrium to show the consensus of the followers with the leader. A sufficient condition for the consensus is obtained for both fractional formation models with and without time-dependent external inputs. Moreover, numerical results are provided to illustrate the dynamical behavior.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Stability for an Opinion Formation Model with a Leader Associated with Fractional Differential Equations\",\"authors\":\"Dussadee Somjaiwang, Parinya Sa Ngiamsunthorn\",\"doi\":\"10.1155/2022/3973157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the dynamics of an opinion formation model with a leader associated with a system of fractional differential equations. We applied the concept of \\n \\n α\\n \\n -exponential stability and the uniqueness of equilibrium to show the consensus of the followers with the leader. A sufficient condition for the consensus is obtained for both fractional formation models with and without time-dependent external inputs. Moreover, numerical results are provided to illustrate the dynamical behavior.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3973157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3973157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类分数阶微分方程系统中有领导的意见形成模型的动力学问题。我们运用α -指数稳定性的概念和均衡的唯一性来表示follower与leader的一致性。得到了具有时变外部输入和不具有时变外部输入的分数阶地层模型一致性的充分条件。此外,还给出了数值结果来说明其动力特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Stability for an Opinion Formation Model with a Leader Associated with Fractional Differential Equations
This paper studies the dynamics of an opinion formation model with a leader associated with a system of fractional differential equations. We applied the concept of α -exponential stability and the uniqueness of equilibrium to show the consensus of the followers with the leader. A sufficient condition for the consensus is obtained for both fractional formation models with and without time-dependent external inputs. Moreover, numerical results are provided to illustrate the dynamical behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信