{"title":"扭曲的亚历山大多项式的丝带2-结1-融合","authors":"T. Kanenobu, Toshio Sumi","doi":"10.18910/77230","DOIUrl":null,"url":null,"abstract":"The twisted Alexander polynomial is defined as a rational function, not necessarily a polynomial. It is shown that for a ribbon 2-knot, the twisted Alexander polynomial associated to an irreducible representation of the knot group to SL(2 , F ) is always a polynomial. Further-more, the twisted Alexander polynomial of a fibered ribbon 2-knot of 1-fusion has the lowest and highest degree coe ffi cients 1 with breadth 2 m − 2, where m is the breadth of its Alexander polynomial.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"789-803"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Twisted alexander polynomial of a ribbon 2-knot of 1-fusion\",\"authors\":\"T. Kanenobu, Toshio Sumi\",\"doi\":\"10.18910/77230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The twisted Alexander polynomial is defined as a rational function, not necessarily a polynomial. It is shown that for a ribbon 2-knot, the twisted Alexander polynomial associated to an irreducible representation of the knot group to SL(2 , F ) is always a polynomial. Further-more, the twisted Alexander polynomial of a fibered ribbon 2-knot of 1-fusion has the lowest and highest degree coe ffi cients 1 with breadth 2 m − 2, where m is the breadth of its Alexander polynomial.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"789-803\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/77230\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/77230","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Twisted alexander polynomial of a ribbon 2-knot of 1-fusion
The twisted Alexander polynomial is defined as a rational function, not necessarily a polynomial. It is shown that for a ribbon 2-knot, the twisted Alexander polynomial associated to an irreducible representation of the knot group to SL(2 , F ) is always a polynomial. Further-more, the twisted Alexander polynomial of a fibered ribbon 2-knot of 1-fusion has the lowest and highest degree coe ffi cients 1 with breadth 2 m − 2, where m is the breadth of its Alexander polynomial.
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.