面包小麦中婴儿潮同源物的鉴定

Q1 Agricultural and Biological Sciences
Andriy Bilichak, Justin Luu, Fengying Jiang, Franҫois Eudes
{"title":"面包小麦中婴儿潮同源物的鉴定","authors":"Andriy Bilichak,&nbsp;Justin Luu,&nbsp;Fengying Jiang,&nbsp;Franҫois Eudes","doi":"10.1016/j.aggene.2017.11.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Modern breeding practice of small grain cereals necessitates the development of an efficient system for the large scale and reproducible production of the </span>doubled haploid (DH) lines. It is believed that among the available DH generation techniques, only isolated microspore culture (IMC) can satisfy the demand of public and private breeding programs. Unfortunately, the IMC method is prone to several challenges that jeopardizes its large scale adoption. One of the approaches to limit the variation in DH plant production and increase the efficiency of the method is manipulation of embryogenesis-related genes. Here we set up a study to map </span><em>BABY BOOM</em><span> in a bread wheat genome. The gene is one of the morphogenic regulators of somatic embryogenesis<span> in plants. To achieve this task, we used amino acid sequences of </span></span><span><em>Zea mays</em></span> BBM-like proteins. <em>TaBBM</em><span><span> homoeologs were mapped to chromosomes 6AL, 6BL and 6DL. Amino acid sequence analysis revealed the presence of two AP2 domains and bbm-1 motif in the A and D copies and only one AP2 domain and bbm-1 motif in the B copy. This, along with the absence of both gene expression and predictable </span>TATA-box, suggests that </span><em>TaBBM-gB</em><span> is a pseudogene. The expression pattern of the identified A and D homoeologs was similar to that for the </span><em>BBM</em>-like genes in other species and presence of the transcript was detected in an embryogenic microspore population. Identification of the <em>TaBBM</em><span> homolog can have application in elevating the efficiency of DH production, tissue culture, plant transformation and genome editing for wheat improvement.</span></p></div>","PeriodicalId":37751,"journal":{"name":"Agri Gene","volume":"7 ","pages":"Pages 43-51"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aggene.2017.11.002","citationCount":"9","resultStr":"{\"title\":\"Identification of BABY BOOM homolog in bread wheat\",\"authors\":\"Andriy Bilichak,&nbsp;Justin Luu,&nbsp;Fengying Jiang,&nbsp;Franҫois Eudes\",\"doi\":\"10.1016/j.aggene.2017.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Modern breeding practice of small grain cereals necessitates the development of an efficient system for the large scale and reproducible production of the </span>doubled haploid (DH) lines. It is believed that among the available DH generation techniques, only isolated microspore culture (IMC) can satisfy the demand of public and private breeding programs. Unfortunately, the IMC method is prone to several challenges that jeopardizes its large scale adoption. One of the approaches to limit the variation in DH plant production and increase the efficiency of the method is manipulation of embryogenesis-related genes. Here we set up a study to map </span><em>BABY BOOM</em><span> in a bread wheat genome. The gene is one of the morphogenic regulators of somatic embryogenesis<span> in plants. To achieve this task, we used amino acid sequences of </span></span><span><em>Zea mays</em></span> BBM-like proteins. <em>TaBBM</em><span><span> homoeologs were mapped to chromosomes 6AL, 6BL and 6DL. Amino acid sequence analysis revealed the presence of two AP2 domains and bbm-1 motif in the A and D copies and only one AP2 domain and bbm-1 motif in the B copy. This, along with the absence of both gene expression and predictable </span>TATA-box, suggests that </span><em>TaBBM-gB</em><span> is a pseudogene. The expression pattern of the identified A and D homoeologs was similar to that for the </span><em>BBM</em>-like genes in other species and presence of the transcript was detected in an embryogenic microspore population. Identification of the <em>TaBBM</em><span> homolog can have application in elevating the efficiency of DH production, tissue culture, plant transformation and genome editing for wheat improvement.</span></p></div>\",\"PeriodicalId\":37751,\"journal\":{\"name\":\"Agri Gene\",\"volume\":\"7 \",\"pages\":\"Pages 43-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aggene.2017.11.002\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agri Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352215117300284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agri Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352215117300284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 9

摘要

现代小粒谷物育种实践要求开发一种高效的系统,以实现双单倍体(DH)系的大规模和可重复性生产。认为在现有的DH生成技术中,只有小孢子分离培养(IMC)才能满足公共和私人育种计划的需求。不幸的是,IMC方法容易面临一些挑战,危及其大规模采用。限制DH植物生产变异和提高方法效率的方法之一是操纵胚胎发生相关基因。在这里,我们建立了一项研究来绘制面包小麦基因组中的婴儿潮图谱。该基因是植物体细胞胚发生的形态发生调控因子之一。为了完成这项任务,我们使用了玉米bbm样蛋白的氨基酸序列。TaBBM同源序列定位于6AL、6BL和6DL染色体。氨基酸序列分析显示,在A和D拷贝中存在两个AP2结构域和bbm-1基序,而在B拷贝中只有一个AP2结构域和bbm-1基序。这一点,再加上缺乏基因表达和可预测的TATA-box,表明TaBBM-gB是一个假基因。所鉴定的A和D同源基因的表达模式与其他物种中bbm样基因的表达模式相似,并且在胚性小孢子群体中检测到转录物的存在。TaBBM同源物的鉴定在提高小麦DH生产效率、组织培养、植株转化和基因组编辑等方面具有应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of BABY BOOM homolog in bread wheat

Modern breeding practice of small grain cereals necessitates the development of an efficient system for the large scale and reproducible production of the doubled haploid (DH) lines. It is believed that among the available DH generation techniques, only isolated microspore culture (IMC) can satisfy the demand of public and private breeding programs. Unfortunately, the IMC method is prone to several challenges that jeopardizes its large scale adoption. One of the approaches to limit the variation in DH plant production and increase the efficiency of the method is manipulation of embryogenesis-related genes. Here we set up a study to map BABY BOOM in a bread wheat genome. The gene is one of the morphogenic regulators of somatic embryogenesis in plants. To achieve this task, we used amino acid sequences of Zea mays BBM-like proteins. TaBBM homoeologs were mapped to chromosomes 6AL, 6BL and 6DL. Amino acid sequence analysis revealed the presence of two AP2 domains and bbm-1 motif in the A and D copies and only one AP2 domain and bbm-1 motif in the B copy. This, along with the absence of both gene expression and predictable TATA-box, suggests that TaBBM-gB is a pseudogene. The expression pattern of the identified A and D homoeologs was similar to that for the BBM-like genes in other species and presence of the transcript was detected in an embryogenic microspore population. Identification of the TaBBM homolog can have application in elevating the efficiency of DH production, tissue culture, plant transformation and genome editing for wheat improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agri Gene
Agri Gene Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
自引率
0.00%
发文量
0
期刊介绍: Agri Gene publishes papers that focus on the regulation, expression, function and evolution of genes in crop plants, farm animals, and agriculturally important insects and microorganisms. Agri Gene strives to be a diverse journal and topics in multiple fields will be considered for publication so long as their main focus is on agriculturally important organisms (plants, animals, insects, or microorganisms). Although not limited to the following, some examples of potential topics include: Gene discovery and characterization. Genetic markers to guide traditional breeding. Genetic effects of transposable elements. Evolutionary genetics, molecular evolution, population genetics, and phylogenetics. Profiling of gene expression and genetic variation. Biotechnology and crop or livestock improvement. Genetic improvement of biological control microorganisms. Genetic control of secondary metabolic pathways and metabolic enzymes of crop pathogens. Transcription analysis of beneficial or pest insect developmental stages Agri Gene encourages submission of novel manuscripts that present a reasonable level of analysis, functional relevance and/or mechanistic insight. Agri Gene also welcomes papers that have predominantly a descriptive component but improve the essential basis of knowledge for subsequent functional studies, or which provide important confirmation of recently published discoveries provided that the information is new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信