利用因果森林估算随时间推移的治疗效果:在ACIC 2022数据挑战中的应用

Shu Wan, Guanghui Zhang
{"title":"利用因果森林估算随时间推移的治疗效果:在ACIC 2022数据挑战中的应用","authors":"Shu Wan, Guanghui Zhang","doi":"10.1353/obs.2023.0026","DOIUrl":null,"url":null,"abstract":"Abstract:In this paper, we present our winning modeling approach, DiConfounder, for the Atlantic Causal Inference Conference (ACIC) 2022 Data Science data challenge. Our method ranks 1st in RMSE and 5th in coverage among the 58 submissions. We propose a transformed outcome estimator by connecting the difference-in-difference and conditional average treatment effect estimation problems. Our comprehensive multistage pipeline encompasses feature engineering, missing value imputation, outcome and propensity score modeling, treatment effects modeling, and SATT and uncertainty estimations. Our model achieves remarkably accurate predictions, with an overall RMSE as low as 11 and 84.5% coverage. Further discussions explore various methods for constructing confidence intervals and analyzing the limitations of our approach under different data generating process settings. We provide evidence that the clustered data structure is the key to success. We also release the source code on GitHub for practitioners to adopt and adapt our methods.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Treatment Effects over Time with Causal Forests: An application to the ACIC 2022 Data Challenge\",\"authors\":\"Shu Wan, Guanghui Zhang\",\"doi\":\"10.1353/obs.2023.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:In this paper, we present our winning modeling approach, DiConfounder, for the Atlantic Causal Inference Conference (ACIC) 2022 Data Science data challenge. Our method ranks 1st in RMSE and 5th in coverage among the 58 submissions. We propose a transformed outcome estimator by connecting the difference-in-difference and conditional average treatment effect estimation problems. Our comprehensive multistage pipeline encompasses feature engineering, missing value imputation, outcome and propensity score modeling, treatment effects modeling, and SATT and uncertainty estimations. Our model achieves remarkably accurate predictions, with an overall RMSE as low as 11 and 84.5% coverage. Further discussions explore various methods for constructing confidence intervals and analyzing the limitations of our approach under different data generating process settings. We provide evidence that the clustered data structure is the key to success. We also release the source code on GitHub for practitioners to adopt and adapt our methods.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:在本文中,我们为大西洋因果推理会议(ACIC) 2022年数据科学数据挑战赛展示了我们的获奖建模方法DiConfounder。我们的方法在58篇投稿中RMSE排名第1,coverage排名第5。我们将差中差和条件平均治疗效果估计问题联系起来,提出了一个转化的结果估计器。我们的综合多阶段管道包括特征工程、缺失值估算、结果和倾向评分建模、治疗效果建模、SATT和不确定性估计。我们的模型实现了非常准确的预测,总体RMSE低至11,覆盖率为84.5%。进一步的讨论探讨了构建置信区间的各种方法,并分析了我们的方法在不同数据生成过程设置下的局限性。我们提供的证据表明,集群数据结构是成功的关键。我们还在GitHub上发布了源代码,供从业者采用和调整我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Treatment Effects over Time with Causal Forests: An application to the ACIC 2022 Data Challenge
Abstract:In this paper, we present our winning modeling approach, DiConfounder, for the Atlantic Causal Inference Conference (ACIC) 2022 Data Science data challenge. Our method ranks 1st in RMSE and 5th in coverage among the 58 submissions. We propose a transformed outcome estimator by connecting the difference-in-difference and conditional average treatment effect estimation problems. Our comprehensive multistage pipeline encompasses feature engineering, missing value imputation, outcome and propensity score modeling, treatment effects modeling, and SATT and uncertainty estimations. Our model achieves remarkably accurate predictions, with an overall RMSE as low as 11 and 84.5% coverage. Further discussions explore various methods for constructing confidence intervals and analyzing the limitations of our approach under different data generating process settings. We provide evidence that the clustered data structure is the key to success. We also release the source code on GitHub for practitioners to adopt and adapt our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信