印度尼西亚明古鲁市Ratu Agung区地震易损性图

L. Z. Mase
{"title":"印度尼西亚明古鲁市Ratu Agung区地震易损性图","authors":"L. Z. Mase","doi":"10.9744/ced.21.2.97-106","DOIUrl":null,"url":null,"abstract":"During the 8.6 Mw Bengkulu-Mentawai Earthquake Ratu Agung District was identified as an impacted area. This paper aims to deliver the seismic vulnerability based on geophysical observation. This study was initiated by performing the ambient noise measurement to obtain the geophysical characteristic, such as amplification and predominant frequency. Furthermore, the vulnerability index analysis was performed from the geophysical information collected from the investigation. To observe the tendency of ground damage during the earthquake, ground damages analysis is also performed. All results are depicted into the microzonation maps. The results showed that the amplification and predominant frequency on site are generally ranging from 3 to 5 and 5 to 8 Hz, respectively. The seismic vulnerability index in study area is up to 10-3. The results showed that during the Bengkulu-Mentawai Earthquake, the investigated sites could be possible to undergo crack settlement which can trigger massive sand boiling in the study area.","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Seismic Vulnerability Maps of Ratu Agung District, Bengkulu City, Indonesia\",\"authors\":\"L. Z. Mase\",\"doi\":\"10.9744/ced.21.2.97-106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the 8.6 Mw Bengkulu-Mentawai Earthquake Ratu Agung District was identified as an impacted area. This paper aims to deliver the seismic vulnerability based on geophysical observation. This study was initiated by performing the ambient noise measurement to obtain the geophysical characteristic, such as amplification and predominant frequency. Furthermore, the vulnerability index analysis was performed from the geophysical information collected from the investigation. To observe the tendency of ground damage during the earthquake, ground damages analysis is also performed. All results are depicted into the microzonation maps. The results showed that the amplification and predominant frequency on site are generally ranging from 3 to 5 and 5 to 8 Hz, respectively. The seismic vulnerability index in study area is up to 10-3. The results showed that during the Bengkulu-Mentawai Earthquake, the investigated sites could be possible to undergo crack settlement which can trigger massive sand boiling in the study area.\",\"PeriodicalId\":30107,\"journal\":{\"name\":\"Civil Engineering Dimension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9744/ced.21.2.97-106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9744/ced.21.2.97-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在8.6兆瓦的明打威地震中,拉图阿贡地区被确定为受影响地区。本文旨在传递基于地球物理观测的地震易损性。本研究是通过测量环境噪声来获得地球物理特性,如放大和主导频率。利用调查所得的地球物理信息进行脆弱性指数分析。为了观察地震过程中地面损伤的变化趋势,还进行了地面损伤分析。所有的结果都被描绘成微带图。结果表明:现场放大频率一般在3 ~ 5 Hz,优势频率一般在5 ~ 8 Hz;研究区地震易损性指数达10-3。结果表明,在明古鲁-明打威地震中,调查地点可能发生裂缝沉降,从而引发研究区域内大量的砂石沸腾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic Vulnerability Maps of Ratu Agung District, Bengkulu City, Indonesia
During the 8.6 Mw Bengkulu-Mentawai Earthquake Ratu Agung District was identified as an impacted area. This paper aims to deliver the seismic vulnerability based on geophysical observation. This study was initiated by performing the ambient noise measurement to obtain the geophysical characteristic, such as amplification and predominant frequency. Furthermore, the vulnerability index analysis was performed from the geophysical information collected from the investigation. To observe the tendency of ground damage during the earthquake, ground damages analysis is also performed. All results are depicted into the microzonation maps. The results showed that the amplification and predominant frequency on site are generally ranging from 3 to 5 and 5 to 8 Hz, respectively. The seismic vulnerability index in study area is up to 10-3. The results showed that during the Bengkulu-Mentawai Earthquake, the investigated sites could be possible to undergo crack settlement which can trigger massive sand boiling in the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信