D. Misch, E. Wegerer, D. Gross, R. Sachsenhofer, A. Rachetti, R. Gratzer
{"title":"乌克兰第聂伯-顿涅茨盆地泥盆系和石炭系页岩矿物学及相变化","authors":"D. Misch, E. Wegerer, D. Gross, R. Sachsenhofer, A. Rachetti, R. Gratzer","doi":"10.17738/ajes.2018.0002","DOIUrl":null,"url":null,"abstract":"Abstract The mineralogy of Devonian to Carboniferous shales from the Ukrainian Dniepr-Donets Basin (DDB) was investigated during this study. These shales show a high compositional variability in vertical and lateral directions. Furthermore, stratigraphic trends were found to be controlled both by climatic factors as well as by changing detrital input from the hinterland. High kaolinite contents and predominance of kaolinite over illite in the Tournaisian and partly in the lower Visean units are likely a result of intense chemical weathering related to the Hangenberg climatic event at the Devonian/ Tournaisian boundary. In contrast, abnormally high kaolinite contents in upper Visean and Serpukhovian samples at the basin center might be caused by different transport properties of kaolinite and illite, leading to selective concentration of small detrital kaolinite particles, which are often in the sub-micrometer range according to scanning electron microscopy observations. K/Al elemental ratios correlate well with illite/kaolinite ratios for samples in which significant amounts of both clay minerals are present, which enables a pre-evaluation of the relative kaolinite content based on bulk geochemical data. As kaolinite is suggested to decrease the fraccability of shales and to have a great influence on their wetting behaviour, this is useful information for explorational purposes. Higher feldspar contents in Devonian and Tournaisian samples, especially along the NE basin margin and in the shallow NW part of the DDB, are likely related to increased detrital input from magmatic precursors (e.g. in the Voronezh Massif ) during (and shortly after) the active rift stage of the DDB. In general, feldspar contents are higher in proximal positions compared to the basin center, which is likely a result of shorter transport distances of the comparably large feldspar grains. Finally, the presence of expandable clay minerals down to depths of 6 km and the fact that no thermal maturity trend is visible down to these depths, proves, that a low post-depositional heat flow was present in the DDB. This is in good agreement with vitrinite reflectance measurements and thermal modelling results from previous studies, which suggest a low Mesozoic heat flow.","PeriodicalId":49319,"journal":{"name":"Austrian Journal of Earth Sciences","volume":"111 1","pages":"15 - 25"},"PeriodicalIF":1.7000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mineralogy and facies variations of Devonian and Carboniferous shales in the Ukrainian Dniepr-Donets Basin\",\"authors\":\"D. Misch, E. Wegerer, D. Gross, R. Sachsenhofer, A. Rachetti, R. Gratzer\",\"doi\":\"10.17738/ajes.2018.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The mineralogy of Devonian to Carboniferous shales from the Ukrainian Dniepr-Donets Basin (DDB) was investigated during this study. These shales show a high compositional variability in vertical and lateral directions. Furthermore, stratigraphic trends were found to be controlled both by climatic factors as well as by changing detrital input from the hinterland. High kaolinite contents and predominance of kaolinite over illite in the Tournaisian and partly in the lower Visean units are likely a result of intense chemical weathering related to the Hangenberg climatic event at the Devonian/ Tournaisian boundary. In contrast, abnormally high kaolinite contents in upper Visean and Serpukhovian samples at the basin center might be caused by different transport properties of kaolinite and illite, leading to selective concentration of small detrital kaolinite particles, which are often in the sub-micrometer range according to scanning electron microscopy observations. K/Al elemental ratios correlate well with illite/kaolinite ratios for samples in which significant amounts of both clay minerals are present, which enables a pre-evaluation of the relative kaolinite content based on bulk geochemical data. As kaolinite is suggested to decrease the fraccability of shales and to have a great influence on their wetting behaviour, this is useful information for explorational purposes. Higher feldspar contents in Devonian and Tournaisian samples, especially along the NE basin margin and in the shallow NW part of the DDB, are likely related to increased detrital input from magmatic precursors (e.g. in the Voronezh Massif ) during (and shortly after) the active rift stage of the DDB. In general, feldspar contents are higher in proximal positions compared to the basin center, which is likely a result of shorter transport distances of the comparably large feldspar grains. Finally, the presence of expandable clay minerals down to depths of 6 km and the fact that no thermal maturity trend is visible down to these depths, proves, that a low post-depositional heat flow was present in the DDB. This is in good agreement with vitrinite reflectance measurements and thermal modelling results from previous studies, which suggest a low Mesozoic heat flow.\",\"PeriodicalId\":49319,\"journal\":{\"name\":\"Austrian Journal of Earth Sciences\",\"volume\":\"111 1\",\"pages\":\"15 - 25\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.17738/ajes.2018.0002\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17738/ajes.2018.0002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Mineralogy and facies variations of Devonian and Carboniferous shales in the Ukrainian Dniepr-Donets Basin
Abstract The mineralogy of Devonian to Carboniferous shales from the Ukrainian Dniepr-Donets Basin (DDB) was investigated during this study. These shales show a high compositional variability in vertical and lateral directions. Furthermore, stratigraphic trends were found to be controlled both by climatic factors as well as by changing detrital input from the hinterland. High kaolinite contents and predominance of kaolinite over illite in the Tournaisian and partly in the lower Visean units are likely a result of intense chemical weathering related to the Hangenberg climatic event at the Devonian/ Tournaisian boundary. In contrast, abnormally high kaolinite contents in upper Visean and Serpukhovian samples at the basin center might be caused by different transport properties of kaolinite and illite, leading to selective concentration of small detrital kaolinite particles, which are often in the sub-micrometer range according to scanning electron microscopy observations. K/Al elemental ratios correlate well with illite/kaolinite ratios for samples in which significant amounts of both clay minerals are present, which enables a pre-evaluation of the relative kaolinite content based on bulk geochemical data. As kaolinite is suggested to decrease the fraccability of shales and to have a great influence on their wetting behaviour, this is useful information for explorational purposes. Higher feldspar contents in Devonian and Tournaisian samples, especially along the NE basin margin and in the shallow NW part of the DDB, are likely related to increased detrital input from magmatic precursors (e.g. in the Voronezh Massif ) during (and shortly after) the active rift stage of the DDB. In general, feldspar contents are higher in proximal positions compared to the basin center, which is likely a result of shorter transport distances of the comparably large feldspar grains. Finally, the presence of expandable clay minerals down to depths of 6 km and the fact that no thermal maturity trend is visible down to these depths, proves, that a low post-depositional heat flow was present in the DDB. This is in good agreement with vitrinite reflectance measurements and thermal modelling results from previous studies, which suggest a low Mesozoic heat flow.
期刊介绍:
AUSTRIAN JOURNAL OF EARTH SCIENCES is the official journal of the Austrian Geological, Mineralogical and Palaeontological Societies, hosted by a country that is famous for its spectacular mountains that are the birthplace for many geological and mineralogical concepts in modern Earth science.
AUSTRIAN JOURNAL OF EARTH SCIENCE focuses on all aspects relevant to the geosciences of the Alps, Bohemian Massif and surrounding areas. Contributions on other regions are welcome if they embed their findings into a conceptual framework that relates the contribution to Alpine-type orogens and Alpine regions in general, and are thus relevant to an international audience. Contributions are subject to peer review and editorial control according to SCI guidelines to ensure that the required standard of scientific excellence is maintained.