分布式数据的多轮平滑复合分位数回归

Pub Date : 2022-01-10 DOI:10.1007/s10463-021-00816-0
Fengrui Di, Lei Wang
{"title":"分布式数据的多轮平滑复合分位数回归","authors":"Fengrui Di,&nbsp;Lei Wang","doi":"10.1007/s10463-021-00816-0","DOIUrl":null,"url":null,"abstract":"<div><p>Statistical analysis of large-scale dataset is challenging due to the limited memory constraint and computation source and calls for the efficient distributed methods. In this paper, we mainly study the distributed estimation and inference for composite quantile regression (CQR). For computational and statistical efficiency, we propose to apply a smoothing idea to the CQR loss function for the distributed data and then successively refine the estimator via multiple rounds of aggregations. Based on the Bahadur representation, we derive the asymptotic normality of the proposed multi-round smoothed CQR estimator and show that it also achieves the same efficiency of the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover, to improve the efficiency of the CQR, we propose a multi-round smoothed weighted CQR estimator. Extensive numerical experiments on both simulated and real data validate the superior performance of the proposed estimators.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-round smoothed composite quantile regression for distributed data\",\"authors\":\"Fengrui Di,&nbsp;Lei Wang\",\"doi\":\"10.1007/s10463-021-00816-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Statistical analysis of large-scale dataset is challenging due to the limited memory constraint and computation source and calls for the efficient distributed methods. In this paper, we mainly study the distributed estimation and inference for composite quantile regression (CQR). For computational and statistical efficiency, we propose to apply a smoothing idea to the CQR loss function for the distributed data and then successively refine the estimator via multiple rounds of aggregations. Based on the Bahadur representation, we derive the asymptotic normality of the proposed multi-round smoothed CQR estimator and show that it also achieves the same efficiency of the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover, to improve the efficiency of the CQR, we propose a multi-round smoothed weighted CQR estimator. Extensive numerical experiments on both simulated and real data validate the superior performance of the proposed estimators.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-021-00816-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00816-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于内存约束和计算源的限制,大规模数据集的统计分析具有挑战性,需要高效的分布式方法。本文主要研究了复合分位数回归(CQR)的分布估计和推理。为了提高计算和统计效率,我们提出对分布式数据的CQR损失函数应用平滑思想,然后通过多轮聚合逐步改进估计器。基于Bahadur表示,我们推导了所提出的多轮光滑CQR估计量的渐近正态性,并通过同时分析整个数据集,证明了所提出的多轮光滑CQR估计量也达到了与理想CQR估计量相同的效率。此外,为了提高CQR的效率,我们提出了一种多轮光滑加权CQR估计器。在模拟和实际数据上进行了大量的数值实验,验证了所提估计器的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multi-round smoothed composite quantile regression for distributed data

Statistical analysis of large-scale dataset is challenging due to the limited memory constraint and computation source and calls for the efficient distributed methods. In this paper, we mainly study the distributed estimation and inference for composite quantile regression (CQR). For computational and statistical efficiency, we propose to apply a smoothing idea to the CQR loss function for the distributed data and then successively refine the estimator via multiple rounds of aggregations. Based on the Bahadur representation, we derive the asymptotic normality of the proposed multi-round smoothed CQR estimator and show that it also achieves the same efficiency of the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover, to improve the efficiency of the CQR, we propose a multi-round smoothed weighted CQR estimator. Extensive numerical experiments on both simulated and real data validate the superior performance of the proposed estimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信