企业违约概率:单指数风险模型方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shaobo Li, Shaonan Tian, Yan Yu, Xiaorui Zhu, Heng Lian
{"title":"企业违约概率:单指数风险模型方法","authors":"Shaobo Li, Shaonan Tian, Yan Yu, Xiaorui Zhu, Heng Lian","doi":"10.1080/07350015.2022.2120484","DOIUrl":null,"url":null,"abstract":"Abstract Corporate probability of default (PD) prediction is vitally important for risk management and asset pricing. In search of accurate PD prediction, we propose a flexible yet easy-to-interpret default-prediction single-index hazard model (DSI). By applying it to a comprehensive U.S. corporate bankruptcy database we constructed, we discover an interesting V-shaped relationship, indicating a violation of the common linear hazard specification. Most importantly, the single-index hazard model passes the Hosmer-Lemeshow goodness-of-fit calibration test while neither does a state-of-the-art linear hazard model in finance nor a parametric class of Box-Cox transformation survival models. In an economic value analysis, we find that this may translate to as much as three times of profit compared to the linear hazard model. In model estimation, we adopt a penalized-spline approximation for the unknown function and propose an efficient algorithm. With a diverging number of spline knots, we establish consistency and asymptotic theories for the penalized-spline likelihood estimators. Furthermore, we reexamine the distress risk anomaly, that is, higher financially distressed stocks deliver anomalously lower excess returns. Based on the PDs from the proposed single-index hazard model, we find that the distress risk anomaly has weakened or even disappeared during the extended period.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corporate Probability of Default: A Single-Index Hazard Model Approach\",\"authors\":\"Shaobo Li, Shaonan Tian, Yan Yu, Xiaorui Zhu, Heng Lian\",\"doi\":\"10.1080/07350015.2022.2120484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Corporate probability of default (PD) prediction is vitally important for risk management and asset pricing. In search of accurate PD prediction, we propose a flexible yet easy-to-interpret default-prediction single-index hazard model (DSI). By applying it to a comprehensive U.S. corporate bankruptcy database we constructed, we discover an interesting V-shaped relationship, indicating a violation of the common linear hazard specification. Most importantly, the single-index hazard model passes the Hosmer-Lemeshow goodness-of-fit calibration test while neither does a state-of-the-art linear hazard model in finance nor a parametric class of Box-Cox transformation survival models. In an economic value analysis, we find that this may translate to as much as three times of profit compared to the linear hazard model. In model estimation, we adopt a penalized-spline approximation for the unknown function and propose an efficient algorithm. With a diverging number of spline knots, we establish consistency and asymptotic theories for the penalized-spline likelihood estimators. Furthermore, we reexamine the distress risk anomaly, that is, higher financially distressed stocks deliver anomalously lower excess returns. Based on the PDs from the proposed single-index hazard model, we find that the distress risk anomaly has weakened or even disappeared during the extended period.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2120484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2120484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要企业违约概率预测对风险管理和资产定价至关重要。为了寻求准确的PD预测,我们提出了一种灵活但易于解释的默认预测单指标风险模型(DSI)。通过将其应用于我们构建的一个全面的美国企业破产数据库,我们发现了一个有趣的V型关系,表明它违反了常见的线性风险规范。最重要的是,单指标风险模型通过了Hosmer-Lemeshow拟合优度校准测试,而金融领域最先进的线性风险模型和Box-Cox变换生存模型的参数类都没有通过。在经济价值分析中,我们发现与线性风险模型相比,这可能转化为高达三倍的利润。在模型估计中,我们对未知函数采用惩罚样条近似,并提出了一种有效的算法。在样条节点数目发散的情况下,我们建立了惩罚样条似然估计的一致性和渐近理论。此外,我们重新审视了困境风险异常,即财务困境股票越高,超额收益越低。基于所提出的单指标风险模型的PD,我们发现在延长的时间段内,遇险风险异常已经减弱甚至消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corporate Probability of Default: A Single-Index Hazard Model Approach
Abstract Corporate probability of default (PD) prediction is vitally important for risk management and asset pricing. In search of accurate PD prediction, we propose a flexible yet easy-to-interpret default-prediction single-index hazard model (DSI). By applying it to a comprehensive U.S. corporate bankruptcy database we constructed, we discover an interesting V-shaped relationship, indicating a violation of the common linear hazard specification. Most importantly, the single-index hazard model passes the Hosmer-Lemeshow goodness-of-fit calibration test while neither does a state-of-the-art linear hazard model in finance nor a parametric class of Box-Cox transformation survival models. In an economic value analysis, we find that this may translate to as much as three times of profit compared to the linear hazard model. In model estimation, we adopt a penalized-spline approximation for the unknown function and propose an efficient algorithm. With a diverging number of spline knots, we establish consistency and asymptotic theories for the penalized-spline likelihood estimators. Furthermore, we reexamine the distress risk anomaly, that is, higher financially distressed stocks deliver anomalously lower excess returns. Based on the PDs from the proposed single-index hazard model, we find that the distress risk anomaly has weakened or even disappeared during the extended period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信