分数阶布朗运动驱动粗糙微分方程的准确定非自交

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
O. Cheng, William Roberson-Vickery
{"title":"分数阶布朗运动驱动粗糙微分方程的准确定非自交","authors":"O. Cheng, William Roberson-Vickery","doi":"10.1214/22-ecp454","DOIUrl":null,"url":null,"abstract":"In this paper we study the self-intersection of paths solving elliptic stochastic differential equations driven by fractional Brownian motion. We show that such a path has no self-intersection – except for paths forming a set of zero (r, q)-capacity in the sample space – provided the dimension d of the space and the Hurst parameter H satisfy the inequality d > rq + 2/H. This inequality is sharp in the case of brownian motion and fractional brownian motion according to existing results. Various results exist for the critical case where d = rq + 4 for Brownian motion.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-sure non-self-intersection for rough differential equations driven by fractional Brownian motion\",\"authors\":\"O. Cheng, William Roberson-Vickery\",\"doi\":\"10.1214/22-ecp454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the self-intersection of paths solving elliptic stochastic differential equations driven by fractional Brownian motion. We show that such a path has no self-intersection – except for paths forming a set of zero (r, q)-capacity in the sample space – provided the dimension d of the space and the Hurst parameter H satisfy the inequality d > rq + 2/H. This inequality is sharp in the case of brownian motion and fractional brownian motion according to existing results. Various results exist for the critical case where d = rq + 4 for Brownian motion.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了由分数阶布朗运动驱动的椭圆型随机微分方程的自交路径。如果空间的维数d和Hurst参数H满足不等式d > rq + 2/H,我们证明了这样的路径没有自交——除了在样本空间中形成零(r, q)容量集的路径。根据已有的结果,这种不等式在布朗运动和分数布朗运动的情况下是明显的。对于布朗运动d = rq + 4的临界情况,存在各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-sure non-self-intersection for rough differential equations driven by fractional Brownian motion
In this paper we study the self-intersection of paths solving elliptic stochastic differential equations driven by fractional Brownian motion. We show that such a path has no self-intersection – except for paths forming a set of zero (r, q)-capacity in the sample space – provided the dimension d of the space and the Hurst parameter H satisfy the inequality d > rq + 2/H. This inequality is sharp in the case of brownian motion and fractional brownian motion according to existing results. Various results exist for the critical case where d = rq + 4 for Brownian motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信