考虑运动约束的GA-PID控制全向移动机器人在危险区域的二维平滑导航

Q1 Mathematics
Wafa Batayneh, Yusra AbuRmaileh, Mohammad Adeeb, Assem N. AL-Karasneh
{"title":"考虑运动约束的GA-PID控制全向移动机器人在危险区域的二维平滑导航","authors":"Wafa Batayneh, Yusra AbuRmaileh, Mohammad Adeeb, Assem N. AL-Karasneh","doi":"10.15866/iremos.v14i3.20237","DOIUrl":null,"url":null,"abstract":"Given the increase use of modern technology in today’s life, many facility appliances provide efficient ways to protect human from hazardous work areas, such as explosives, and nuclear plants. This paper proposes a four omnidirectional-wheels mobile robot based on a Mecanum wheel that can navigate smoothly taking into consideration the kinematic constraint. In this research, Genetic Algorithm (GA) is used for two purposes. First, GA-PID controller is used, where a PID controller is tuned using GA. Second, the kinematic constraint of the motor’s speed is taken into consideration using GA controller. GA finds the appropriate robot velocity that requires about 90% of the rated maximum motor’s speed. In order to evaluate the performance of the developed robot and its controller, MATLAB is used to verify the robustness of the optimized GA-PID controller taking into consideration the motors’ speeds. The error and the robot motors’ speeds are calculated utilizing MATLAB simulation on different complex shapes and the result shows that the robot can smoothly navigate complex shapes without exceeding the rated maximum motors speed.","PeriodicalId":38950,"journal":{"name":"International Review on Modelling and Simulations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth 2D Navigation in Hazardous Areas Utilizing a GA-PID Controlled Omnidirectional Mobile Robot with Kinematic Constraint Consideration\",\"authors\":\"Wafa Batayneh, Yusra AbuRmaileh, Mohammad Adeeb, Assem N. AL-Karasneh\",\"doi\":\"10.15866/iremos.v14i3.20237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the increase use of modern technology in today’s life, many facility appliances provide efficient ways to protect human from hazardous work areas, such as explosives, and nuclear plants. This paper proposes a four omnidirectional-wheels mobile robot based on a Mecanum wheel that can navigate smoothly taking into consideration the kinematic constraint. In this research, Genetic Algorithm (GA) is used for two purposes. First, GA-PID controller is used, where a PID controller is tuned using GA. Second, the kinematic constraint of the motor’s speed is taken into consideration using GA controller. GA finds the appropriate robot velocity that requires about 90% of the rated maximum motor’s speed. In order to evaluate the performance of the developed robot and its controller, MATLAB is used to verify the robustness of the optimized GA-PID controller taking into consideration the motors’ speeds. The error and the robot motors’ speeds are calculated utilizing MATLAB simulation on different complex shapes and the result shows that the robot can smoothly navigate complex shapes without exceeding the rated maximum motors speed.\",\"PeriodicalId\":38950,\"journal\":{\"name\":\"International Review on Modelling and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review on Modelling and Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/iremos.v14i3.20237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review on Modelling and Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/iremos.v14i3.20237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

鉴于现代技术在当今生活中的使用越来越多,许多设施设备提供了有效的方法来保护人类免受危险的工作区域,如爆炸物和核电站。考虑运动约束,提出了一种基于机械轮的四轮全向移动机器人。在本研究中,遗传算法(GA)被用于两个目的。首先,使用GA-PID控制器,其中PID控制器使用GA进行调谐。其次,利用遗传算法考虑了电机转速的运动约束。遗传算法找到合适的机器人速度,大约需要90%的额定最大电机速度。为了评估所开发机器人及其控制器的性能,利用MATLAB验证了考虑电机转速的优化GA-PID控制器的鲁棒性。利用MATLAB仿真计算了机器人在不同复杂形状下的误差和电机速度,结果表明,机器人在不超过电机额定最大转速的情况下,可以顺利导航复杂形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth 2D Navigation in Hazardous Areas Utilizing a GA-PID Controlled Omnidirectional Mobile Robot with Kinematic Constraint Consideration
Given the increase use of modern technology in today’s life, many facility appliances provide efficient ways to protect human from hazardous work areas, such as explosives, and nuclear plants. This paper proposes a four omnidirectional-wheels mobile robot based on a Mecanum wheel that can navigate smoothly taking into consideration the kinematic constraint. In this research, Genetic Algorithm (GA) is used for two purposes. First, GA-PID controller is used, where a PID controller is tuned using GA. Second, the kinematic constraint of the motor’s speed is taken into consideration using GA controller. GA finds the appropriate robot velocity that requires about 90% of the rated maximum motor’s speed. In order to evaluate the performance of the developed robot and its controller, MATLAB is used to verify the robustness of the optimized GA-PID controller taking into consideration the motors’ speeds. The error and the robot motors’ speeds are calculated utilizing MATLAB simulation on different complex shapes and the result shows that the robot can smoothly navigate complex shapes without exceeding the rated maximum motors speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review on Modelling and Simulations
International Review on Modelling and Simulations Engineering-Mechanical Engineering
CiteScore
2.80
自引率
0.00%
发文量
23
期刊介绍: The International Review on Modelling and Simulations (IREMOS) is a peer-reviewed journal that publishes original theoretical and applied papers concerning Modelling, Numerical studies, Algorithms and Simulations in all the engineering fields. The topics to be covered include, but are not limited to: theoretical aspects of modelling and simulation, methods and algorithms for design control and validation of systems, tools for high performance computing simulation. The applied papers can deal with Modelling, Numerical studies, Algorithms and Simulations regarding all the engineering fields; particularly about the electrical engineering (power system, power electronics, automotive applications, power devices, energy conversion, electrical machines, lighting systems and so on), the mechanical engineering (kinematics and dynamics of rigid bodies, vehicle system dynamics, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, computational mechanics, mechanics of materials and structures, plasticity, hydromechanics, aerodynamics, aeroelasticity, biomechanics, geomechanics, thermodynamics, heat transfer, refrigeration, fluid mechanics, micromechanics, nanomechanics, robotics, mechatronics, combustion theory, turbomachinery, manufacturing processes and so on), the chemical engineering (chemical reaction engineering, environmental chemical engineering, materials synthesis and processing and so on). IREMOS also publishes letters to the Editor and research notes which discuss new research, or research in progress in any of the above thematic areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信