{"title":"给出了将Huber有限连通性定理推广到高维的充分条件","authors":"K. Kondo, Yusuke Shinoda","doi":"10.2748/tmj.20200701","DOIUrl":null,"url":null,"abstract":"Let $M$ be a connected complete noncompact $n$-dimensional Riemannian manifold with a base point $p \\in M$ whose radial sectional curvature at $p$ is bounded from below by that of a noncompact surface of revolution which admits a finite total curvature where $n \\geq 2$. Note here that our radial curvatures can change signs wildly. We then show that $\\lim_{t\\to\\infty} \\mathrm{vol} B_t(p) / t^n$ exists where $\\mathrm{vol} B_t(p)$ denotes the volume of the open metric ball $B_t(p)$ with center $p$ and radius $t$. Moreover we show that in addition if the limit above is positive, then $M$ has finite topological type and there is therefore a finitely upper bound on the number of ends of $M$.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sufficient conditions to extend Huber's finite connectivity theorem to higher dimensions\",\"authors\":\"K. Kondo, Yusuke Shinoda\",\"doi\":\"10.2748/tmj.20200701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a connected complete noncompact $n$-dimensional Riemannian manifold with a base point $p \\\\in M$ whose radial sectional curvature at $p$ is bounded from below by that of a noncompact surface of revolution which admits a finite total curvature where $n \\\\geq 2$. Note here that our radial curvatures can change signs wildly. We then show that $\\\\lim_{t\\\\to\\\\infty} \\\\mathrm{vol} B_t(p) / t^n$ exists where $\\\\mathrm{vol} B_t(p)$ denotes the volume of the open metric ball $B_t(p)$ with center $p$ and radius $t$. Moreover we show that in addition if the limit above is positive, then $M$ has finite topological type and there is therefore a finitely upper bound on the number of ends of $M$.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20200701\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20200701","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设$M$是一个连通的完全非紧$n$维黎曼流形,其基点$p\在M$中,其在$p$处的径向截面曲率从下界于非紧旋转表面的曲率,该非紧旋转曲面允许有限的总曲率,其中$n\geq2$。请注意,我们的径向曲率可以剧烈地改变符号。然后我们证明了$\lim_{t\ to \infty}\mathrm{vol}B_t(p)/t^n$存在,其中$\mathrm{vol}B_t(p)$表示中心为$p$、半径为$t$的开度量球$B_t(p$的体积。此外,我们还证明了如果上面的极限是正的,那么$M$具有有限拓扑类型,因此在$M$的端数上存在有限上界。
On sufficient conditions to extend Huber's finite connectivity theorem to higher dimensions
Let $M$ be a connected complete noncompact $n$-dimensional Riemannian manifold with a base point $p \in M$ whose radial sectional curvature at $p$ is bounded from below by that of a noncompact surface of revolution which admits a finite total curvature where $n \geq 2$. Note here that our radial curvatures can change signs wildly. We then show that $\lim_{t\to\infty} \mathrm{vol} B_t(p) / t^n$ exists where $\mathrm{vol} B_t(p)$ denotes the volume of the open metric ball $B_t(p)$ with center $p$ and radius $t$. Moreover we show that in addition if the limit above is positive, then $M$ has finite topological type and there is therefore a finitely upper bound on the number of ends of $M$.