Xuewen Zhou, Z. Hui, R. Vachula, Xiao Wei, Peng Chen, Jun Zhang, Xiuxi Wang, T. Peng
{"title":"青藏高原东北部巫山盆地中中新世古火及其与植被变化的复杂关系:来自高分辨率木炭记录的证据","authors":"Xuewen Zhou, Z. Hui, R. Vachula, Xiao Wei, Peng Chen, Jun Zhang, Xiuxi Wang, T. Peng","doi":"10.1029/2022PA004461","DOIUrl":null,"url":null,"abstract":"Fire plays an important role in the Earth system, and is considered an essential control on global vegetation evolution and climate change. However, few Miocene high–resolution fire records have been obtained with which to assess the controls and possible drivers of fire on multiple timescales. Here, we provide a high–resolution charcoal record of the Nanyu section to reconstruct mid–Miocene fire history in the Wushan Basin. Further, we identify and assess the long–term regional fire regime (frequency and intensity) controls and possible drivers by making comparisons with published paleoclimate and paleoenvironmental records (i.e., palynomorphs, magnetic susceptibility, redness, stable isotope, pCO2 and marine δ18O data etc.). We also performed spectral analysis of the charcoal records to investigate possible controls of fire activity on orbital time scales. The analysis results indicate that (a) the reconstructed fire regime exhibits an increase from ∼16 to 13.86 Ma and a significant decrease after ∼13.86 Ma. (b) The steadily increasing regional fire activity during the period of ∼16–13.86 Ma may be caused by increased fuel ignitability and drying climate, whereas significantly decreased fire activity after ∼13.86 Ma is likely attributed to decreased fuel load due to the Mi–3b global cooling event. (c) On orbital time scales, the finding of the Earth's orbital cycles in fire proxy indicates that mid–Miocene fire activity variability in the study area was likely related to Earth's orbital forcing.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mid–Miocene Palaeofire and Its Complex Relationship With Vegetation Changes in the Wushan Basin, Northeastern Tibetan Plateau, China: Evidence From a High–Resolution Charcoal Record\",\"authors\":\"Xuewen Zhou, Z. Hui, R. Vachula, Xiao Wei, Peng Chen, Jun Zhang, Xiuxi Wang, T. Peng\",\"doi\":\"10.1029/2022PA004461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire plays an important role in the Earth system, and is considered an essential control on global vegetation evolution and climate change. However, few Miocene high–resolution fire records have been obtained with which to assess the controls and possible drivers of fire on multiple timescales. Here, we provide a high–resolution charcoal record of the Nanyu section to reconstruct mid–Miocene fire history in the Wushan Basin. Further, we identify and assess the long–term regional fire regime (frequency and intensity) controls and possible drivers by making comparisons with published paleoclimate and paleoenvironmental records (i.e., palynomorphs, magnetic susceptibility, redness, stable isotope, pCO2 and marine δ18O data etc.). We also performed spectral analysis of the charcoal records to investigate possible controls of fire activity on orbital time scales. The analysis results indicate that (a) the reconstructed fire regime exhibits an increase from ∼16 to 13.86 Ma and a significant decrease after ∼13.86 Ma. (b) The steadily increasing regional fire activity during the period of ∼16–13.86 Ma may be caused by increased fuel ignitability and drying climate, whereas significantly decreased fire activity after ∼13.86 Ma is likely attributed to decreased fuel load due to the Mi–3b global cooling event. (c) On orbital time scales, the finding of the Earth's orbital cycles in fire proxy indicates that mid–Miocene fire activity variability in the study area was likely related to Earth's orbital forcing.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2022PA004461\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004461","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Mid–Miocene Palaeofire and Its Complex Relationship With Vegetation Changes in the Wushan Basin, Northeastern Tibetan Plateau, China: Evidence From a High–Resolution Charcoal Record
Fire plays an important role in the Earth system, and is considered an essential control on global vegetation evolution and climate change. However, few Miocene high–resolution fire records have been obtained with which to assess the controls and possible drivers of fire on multiple timescales. Here, we provide a high–resolution charcoal record of the Nanyu section to reconstruct mid–Miocene fire history in the Wushan Basin. Further, we identify and assess the long–term regional fire regime (frequency and intensity) controls and possible drivers by making comparisons with published paleoclimate and paleoenvironmental records (i.e., palynomorphs, magnetic susceptibility, redness, stable isotope, pCO2 and marine δ18O data etc.). We also performed spectral analysis of the charcoal records to investigate possible controls of fire activity on orbital time scales. The analysis results indicate that (a) the reconstructed fire regime exhibits an increase from ∼16 to 13.86 Ma and a significant decrease after ∼13.86 Ma. (b) The steadily increasing regional fire activity during the period of ∼16–13.86 Ma may be caused by increased fuel ignitability and drying climate, whereas significantly decreased fire activity after ∼13.86 Ma is likely attributed to decreased fuel load due to the Mi–3b global cooling event. (c) On orbital time scales, the finding of the Earth's orbital cycles in fire proxy indicates that mid–Miocene fire activity variability in the study area was likely related to Earth's orbital forcing.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.