{"title":"利用光谱和图像数据以及形态特征对玉米特殊基因型的活/非活种子进行分类","authors":"F. Yaman, F. Kahrıman","doi":"10.1080/15427528.2021.1960942","DOIUrl":null,"url":null,"abstract":"ABSTRACT Seed viability is an important consideration for agricultural production. The number of studies on the measurement of seed viability in specialty maize genotypes via new approaches is limited. This study was carried out to determine the viability of the seeds (n = 950) of two specialty maize (high oil and high protein) populations using spectral measurements and imaging techniques. Spectral data from the seed embryos were collected between 1200 and 2400 nm. Image data were taken with 300 dpi resolution. From the collected images, red (R), green (G) and blue (B) [RGB] data were extracted, and morphological features (M) were also determined. Then, the seed samples were separated into two sets and the viability of the samples was determined using two different methods [standard germination (SG) test and triphenyl tetrazolium chloride (TTC) test]. Support Vector Machine (SVM), Random Forest (RF), and Classification and Regression Tree (CART) methods were used to develop the classification models (n = 36). Classification accuracy of the models was comparable for the SG test (0.56–0.91) and TTC test (0.53–0.85). However, the classification models based on TTC test results had higher sensitivity (0.86–0.99) than specificity values (0.07–0.74), which indicated that the viable seeds were more accurately identified than the non-viable seeds. The RF model, created using the NIR+M dataset, based on the SG test (sensitivity = 0.89, specificity = 0.94, accuracy = 0.91), was most effective for determination of the seed viability of specialty maize genotypes used in this study.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"36 1","pages":"285 - 300"},"PeriodicalIF":1.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of viable/non-viable seeds of specialty maize genotypes using spectral and image data plus morphological features\",\"authors\":\"F. Yaman, F. Kahrıman\",\"doi\":\"10.1080/15427528.2021.1960942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Seed viability is an important consideration for agricultural production. The number of studies on the measurement of seed viability in specialty maize genotypes via new approaches is limited. This study was carried out to determine the viability of the seeds (n = 950) of two specialty maize (high oil and high protein) populations using spectral measurements and imaging techniques. Spectral data from the seed embryos were collected between 1200 and 2400 nm. Image data were taken with 300 dpi resolution. From the collected images, red (R), green (G) and blue (B) [RGB] data were extracted, and morphological features (M) were also determined. Then, the seed samples were separated into two sets and the viability of the samples was determined using two different methods [standard germination (SG) test and triphenyl tetrazolium chloride (TTC) test]. Support Vector Machine (SVM), Random Forest (RF), and Classification and Regression Tree (CART) methods were used to develop the classification models (n = 36). Classification accuracy of the models was comparable for the SG test (0.56–0.91) and TTC test (0.53–0.85). However, the classification models based on TTC test results had higher sensitivity (0.86–0.99) than specificity values (0.07–0.74), which indicated that the viable seeds were more accurately identified than the non-viable seeds. The RF model, created using the NIR+M dataset, based on the SG test (sensitivity = 0.89, specificity = 0.94, accuracy = 0.91), was most effective for determination of the seed viability of specialty maize genotypes used in this study.\",\"PeriodicalId\":15468,\"journal\":{\"name\":\"Journal of Crop Improvement\",\"volume\":\"36 1\",\"pages\":\"285 - 300\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crop Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427528.2021.1960942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2021.1960942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Classification of viable/non-viable seeds of specialty maize genotypes using spectral and image data plus morphological features
ABSTRACT Seed viability is an important consideration for agricultural production. The number of studies on the measurement of seed viability in specialty maize genotypes via new approaches is limited. This study was carried out to determine the viability of the seeds (n = 950) of two specialty maize (high oil and high protein) populations using spectral measurements and imaging techniques. Spectral data from the seed embryos were collected between 1200 and 2400 nm. Image data were taken with 300 dpi resolution. From the collected images, red (R), green (G) and blue (B) [RGB] data were extracted, and morphological features (M) were also determined. Then, the seed samples were separated into two sets and the viability of the samples was determined using two different methods [standard germination (SG) test and triphenyl tetrazolium chloride (TTC) test]. Support Vector Machine (SVM), Random Forest (RF), and Classification and Regression Tree (CART) methods were used to develop the classification models (n = 36). Classification accuracy of the models was comparable for the SG test (0.56–0.91) and TTC test (0.53–0.85). However, the classification models based on TTC test results had higher sensitivity (0.86–0.99) than specificity values (0.07–0.74), which indicated that the viable seeds were more accurately identified than the non-viable seeds. The RF model, created using the NIR+M dataset, based on the SG test (sensitivity = 0.89, specificity = 0.94, accuracy = 0.91), was most effective for determination of the seed viability of specialty maize genotypes used in this study.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.