关于系统CB1和准一致性结石的一个格

IF 0.6 Q2 LOGIC
J. Ciuciura
{"title":"关于系统CB1和准一致性结石的一个格","authors":"J. Ciuciura","doi":"10.12775/llp.2019.035","DOIUrl":null,"url":null,"abstract":"In this paper, we present a calculus of paraconsistent logic. We propose an axiomatisation and a semantics for the calculus, and prove several important meta-theorems. The calculus, denoted as CB 1 , is an extension of systems PI, C min and B 1 , and a proper subsystem of Sette’s calculus P 1 . We also investigate the generalization of CB 1 to the hierarchy of related calculi.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the system CB1 and a lattice of the paraconsistent calculi\",\"authors\":\"J. Ciuciura\",\"doi\":\"10.12775/llp.2019.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a calculus of paraconsistent logic. We propose an axiomatisation and a semantics for the calculus, and prove several important meta-theorems. The calculus, denoted as CB 1 , is an extension of systems PI, C min and B 1 , and a proper subsystem of Sette’s calculus P 1 . We also investigate the generalization of CB 1 to the hierarchy of related calculi.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2019.035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2019.035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一个准一致逻辑的微积分。我们提出了微积分的公理化和语义,并证明了几个重要的元定理。表示为CB1的微积分是系统PI、Cmin和B1的扩展,是Sette微积分P1的一个子系统。我们还研究了CB 1对相关结石等级的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the system CB1 and a lattice of the paraconsistent calculi
In this paper, we present a calculus of paraconsistent logic. We propose an axiomatisation and a semantics for the calculus, and prove several important meta-theorems. The calculus, denoted as CB 1 , is an extension of systems PI, C min and B 1 , and a proper subsystem of Sette’s calculus P 1 . We also investigate the generalization of CB 1 to the hierarchy of related calculi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信