关于带势波动方程的局部能量衰减结果的注释

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
R. Ikehata
{"title":"关于带势波动方程的局部能量衰减结果的注释","authors":"R. Ikehata","doi":"10.3233/asy-231835","DOIUrl":null,"url":null,"abstract":"In this paper, we derive uniform local energy decay results for wave equations with a short-range potential in an exterior domain. In this study, we considered this problem within the framework of non-compactly supported initial data, unlike previously reported studies. The essential parts of analysis are both L 2 -estimates of the solution itself and the weighted energy estimates. Only a multiplier method is used, and we do not rely on any resolvent estimates.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on local energy decay results for wave equations with a potential\",\"authors\":\"R. Ikehata\",\"doi\":\"10.3233/asy-231835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive uniform local energy decay results for wave equations with a short-range potential in an exterior domain. In this study, we considered this problem within the framework of non-compactly supported initial data, unlike previously reported studies. The essential parts of analysis are both L 2 -estimates of the solution itself and the weighted energy estimates. Only a multiplier method is used, and we do not rely on any resolvent estimates.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231835\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231835","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们导出了在外域具有短程势的波动方程的一致局域能量衰减结果。在本研究中,我们在非紧支持初始数据的框架内考虑了这个问题,与先前报道的研究不同。分析的关键部分是解决方案本身的l2估计和加权能量估计。仅使用乘数法,我们不依赖于任何解决方案估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on local energy decay results for wave equations with a potential
In this paper, we derive uniform local energy decay results for wave equations with a short-range potential in an exterior domain. In this study, we considered this problem within the framework of non-compactly supported initial data, unlike previously reported studies. The essential parts of analysis are both L 2 -estimates of the solution itself and the weighted energy estimates. Only a multiplier method is used, and we do not rely on any resolvent estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信