时变分数阶Ornstein–Uhlenbeck过程的收敛性结果

IF 0.4 Q4 STATISTICS & PROBABILITY
G. Ascione, Y. Mishura, E. Pirozzi
{"title":"时变分数阶Ornstein–Uhlenbeck过程的收敛性结果","authors":"G. Ascione, Y. Mishura, E. Pirozzi","doi":"10.1090/tpms/1143","DOIUrl":null,"url":null,"abstract":"In this paper we study some convergence results concerning the one-dimensional distribution of a time-changed fractional Ornstein-Uhlenbeck process. In particular, we establish that, despite the time change, the process admits a Gaussian limit random variable. On the other hand, we prove that the process converges towards the time-changed Ornstein-Uhlenbeck as the Hurst index $H \\to 1/2^+$, with locally uniform convergence of one-dimensional distributions. Moreover, we also achieve convergence in the Skorohod $J_1$-topology of the time-changed fractional Ornstein-Uhlenbeck process as $H \\to 1/2^+$ in the space of c\\`adl\\`ag functions. Finally, we exploit some convergence properties of mild solutions of a generalized Fokker-Planck equation associated to the aforementioned processes, as $H \\to 1/2^+$.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence results for the time-changed fractional Ornstein–Uhlenbeck processes\",\"authors\":\"G. Ascione, Y. Mishura, E. Pirozzi\",\"doi\":\"10.1090/tpms/1143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study some convergence results concerning the one-dimensional distribution of a time-changed fractional Ornstein-Uhlenbeck process. In particular, we establish that, despite the time change, the process admits a Gaussian limit random variable. On the other hand, we prove that the process converges towards the time-changed Ornstein-Uhlenbeck as the Hurst index $H \\\\to 1/2^+$, with locally uniform convergence of one-dimensional distributions. Moreover, we also achieve convergence in the Skorohod $J_1$-topology of the time-changed fractional Ornstein-Uhlenbeck process as $H \\\\to 1/2^+$ in the space of c\\\\`adl\\\\`ag functions. Finally, we exploit some convergence properties of mild solutions of a generalized Fokker-Planck equation associated to the aforementioned processes, as $H \\\\to 1/2^+$.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了时变分数阶Ornstein-Uhlenbeck过程一维分布的一些收敛性结果。特别地,我们确定,尽管时间变化,该过程允许高斯极限随机变量。另一方面,我们证明了当Hurst指数$H\为1/2^+$时,该过程收敛于随时间变化的Ornstein-Uhlenbeck,具有一维分布的局部一致收敛性。此外,我们还实现了时变分式Ornstein-Uhlenbeck过程的Skorohod$J_1$-拓扑在c`adl`ag函数空间中收敛为$H`到1/2^+$。最后,我们利用了与上述过程相关的广义Fokker-Planck方程的温和解的一些收敛性质,如$H\到1/2^+$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence results for the time-changed fractional Ornstein–Uhlenbeck processes
In this paper we study some convergence results concerning the one-dimensional distribution of a time-changed fractional Ornstein-Uhlenbeck process. In particular, we establish that, despite the time change, the process admits a Gaussian limit random variable. On the other hand, we prove that the process converges towards the time-changed Ornstein-Uhlenbeck as the Hurst index $H \to 1/2^+$, with locally uniform convergence of one-dimensional distributions. Moreover, we also achieve convergence in the Skorohod $J_1$-topology of the time-changed fractional Ornstein-Uhlenbeck process as $H \to 1/2^+$ in the space of c\`adl\`ag functions. Finally, we exploit some convergence properties of mild solutions of a generalized Fokker-Planck equation associated to the aforementioned processes, as $H \to 1/2^+$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信