残余不稳定性的侵入:锋面动力学的一个案例研究

IF 1.2 2区 数学 Q1 MATHEMATICS
Grégory Faye, Matt Holzer, A. Scheel, L. Siemer
{"title":"残余不稳定性的侵入:锋面动力学的一个案例研究","authors":"Grégory Faye, Matt Holzer, A. Scheel, L. Siemer","doi":"10.1512/iumj.2022.71.9164","DOIUrl":null,"url":null,"abstract":"We study the invasion of an unstable state by a propagating front in a peculiar but generic situation where the invasion process exhibits a remnant instability. Here, remnant instability refers to the fact that the spatially constant invaded state is linearly unstable in any exponentially weighted space in a frame moving with the linear invasion speed. Our main result is the nonlinear asymptotic stability of the selected invasion front for a prototypical model coupling spatio-temporal oscillations and monotone dynamics. We establish stability through a decomposition of the perturbation into two pieces: one that is bounded in the weighted space and a second that is unbounded in the weighted space but which converges uniformly to zero in the unweighted space at an exponential rate. Interestingly, long-time numerical simulations reveal an apparent instability in some cases. We exhibit how this instability is caused by round-off errors that introduce linear resonant coupling of otherwise non-resonant linear modes, and we determine the accelerated invasion speed.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Invasion into remnant instability: a case study of front dynamics\",\"authors\":\"Grégory Faye, Matt Holzer, A. Scheel, L. Siemer\",\"doi\":\"10.1512/iumj.2022.71.9164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the invasion of an unstable state by a propagating front in a peculiar but generic situation where the invasion process exhibits a remnant instability. Here, remnant instability refers to the fact that the spatially constant invaded state is linearly unstable in any exponentially weighted space in a frame moving with the linear invasion speed. Our main result is the nonlinear asymptotic stability of the selected invasion front for a prototypical model coupling spatio-temporal oscillations and monotone dynamics. We establish stability through a decomposition of the perturbation into two pieces: one that is bounded in the weighted space and a second that is unbounded in the weighted space but which converges uniformly to zero in the unweighted space at an exponential rate. Interestingly, long-time numerical simulations reveal an apparent instability in some cases. We exhibit how this instability is caused by round-off errors that introduce linear resonant coupling of otherwise non-resonant linear modes, and we determine the accelerated invasion speed.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9164\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了在一种特殊但普遍的情况下,传播锋对不稳定状态的入侵,其中入侵过程表现出残余的不稳定性。这里,残余不稳定性是指在以线性入侵速度移动的帧中,空间常数入侵状态在任何指数加权空间中都是线性不稳定的。我们的主要结果是,对于一个耦合时空振荡和单调动力学的原型模型,所选入侵前沿的非线性渐近稳定性。我们通过将扰动分解为两部分来建立稳定性:一部分在加权空间中有界,另一部分在权重空间中无界,但在未加权空间中以指数速率一致收敛于零。有趣的是,长期数值模拟揭示了在某些情况下明显的不稳定性。我们展示了这种不稳定性是如何由舍入误差引起的,舍入误差引入了非谐振线性模式的线性谐振耦合,并确定了加速侵入速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invasion into remnant instability: a case study of front dynamics
We study the invasion of an unstable state by a propagating front in a peculiar but generic situation where the invasion process exhibits a remnant instability. Here, remnant instability refers to the fact that the spatially constant invaded state is linearly unstable in any exponentially weighted space in a frame moving with the linear invasion speed. Our main result is the nonlinear asymptotic stability of the selected invasion front for a prototypical model coupling spatio-temporal oscillations and monotone dynamics. We establish stability through a decomposition of the perturbation into two pieces: one that is bounded in the weighted space and a second that is unbounded in the weighted space but which converges uniformly to zero in the unweighted space at an exponential rate. Interestingly, long-time numerical simulations reveal an apparent instability in some cases. We exhibit how this instability is caused by round-off errors that introduce linear resonant coupling of otherwise non-resonant linear modes, and we determine the accelerated invasion speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信