M. Bhargava, A. Shankar, Takashi Taniguchi, F. Thorne, Jacob Tsimerman, Yongqiang Zhao
{"title":"椭圆曲线上数域和积分点类群中2-扭转的界","authors":"M. Bhargava, A. Shankar, Takashi Taniguchi, F. Thorne, Jacob Tsimerman, Yongqiang Zhao","doi":"10.1090/jams/945","DOIUrl":null,"url":null,"abstract":"<p>We prove the first known nontrivial bounds on the sizes of the 2-torsion subgroups of the class groups of cubic and higher degree number fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (the trivial bound being <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O Subscript epsilon comma n Baseline left-parenthesis StartAbsoluteValue normal upper D normal i normal s normal c left-parenthesis upper K right-parenthesis EndAbsoluteValue Superscript 1 slash 2 plus epsilon Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>O</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">D</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">s</mml:mi>\n <mml:mi mathvariant=\"normal\">c</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>K</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O_{\\epsilon ,n}(|\\mathrm {Disc}(K)|^{1/2+\\epsilon })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coming from the bound on the entire class group). This yields corresponding improvements to: (1) bounds of Brumer and Kramer on the sizes of 2-Selmer groups and ranks of elliptic curves, (2) bounds of Helfgott and Venkatesh on the number of integral points on elliptic curves, (3) bounds on the sizes of 2-Selmer groups and ranks of Jacobians of hyperelliptic curves, and (4) bounds of Baily and Wong on the number of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A 4\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mn>4</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-quartic fields of bounded discriminant.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/945","citationCount":"60","resultStr":"{\"title\":\"Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves\",\"authors\":\"M. Bhargava, A. Shankar, Takashi Taniguchi, F. Thorne, Jacob Tsimerman, Yongqiang Zhao\",\"doi\":\"10.1090/jams/945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the first known nontrivial bounds on the sizes of the 2-torsion subgroups of the class groups of cubic and higher degree number fields <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\">\\n <mml:semantics>\\n <mml:mi>K</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (the trivial bound being <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O Subscript epsilon comma n Baseline left-parenthesis StartAbsoluteValue normal upper D normal i normal s normal c left-parenthesis upper K right-parenthesis EndAbsoluteValue Superscript 1 slash 2 plus epsilon Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>O</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">D</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">i</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">s</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">c</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>K</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O_{\\\\epsilon ,n}(|\\\\mathrm {Disc}(K)|^{1/2+\\\\epsilon })</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> coming from the bound on the entire class group). This yields corresponding improvements to: (1) bounds of Brumer and Kramer on the sizes of 2-Selmer groups and ranks of elliptic curves, (2) bounds of Helfgott and Venkatesh on the number of integral points on elliptic curves, (3) bounds on the sizes of 2-Selmer groups and ranks of Jacobians of hyperelliptic curves, and (4) bounds of Baily and Wong on the number of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A 4\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mn>4</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-quartic fields of bounded discriminant.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/945\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/945\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/945","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 60
摘要
我们证明了三次和高次数域K K的类群的2-扭子群的大小的第一个已知的非平凡界(平凡界是O∈,n(|D i s c(K)|1/2+∈)O_{\epsilon,n}(|\mathrm{Disc}(K)|^{1/2+\epsilon})。这得到了相应的改进:(1)Brumer和Kramer关于2-Selmer群的大小和椭圆曲线的秩的界,(2)Helfgott和Venkatesh关于椭圆曲线上积分点数的界,(4)Baily和Wong关于有界判别式的A4 A_ 4-四次域个数的界。
Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves
We prove the first known nontrivial bounds on the sizes of the 2-torsion subgroups of the class groups of cubic and higher degree number fields KK (the trivial bound being Oϵ,n(|Disc(K)|1/2+ϵ)O_{\epsilon ,n}(|\mathrm {Disc}(K)|^{1/2+\epsilon }) coming from the bound on the entire class group). This yields corresponding improvements to: (1) bounds of Brumer and Kramer on the sizes of 2-Selmer groups and ranks of elliptic curves, (2) bounds of Helfgott and Venkatesh on the number of integral points on elliptic curves, (3) bounds on the sizes of 2-Selmer groups and ranks of Jacobians of hyperelliptic curves, and (4) bounds of Baily and Wong on the number of A4A_4-quartic fields of bounded discriminant.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.