带有未知噪声的球面数据的反褶积

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
J'er'emie Capitao-Miniconi, E. Gassiat
{"title":"带有未知噪声的球面数据的反褶积","authors":"J'er'emie Capitao-Miniconi, E. Gassiat","doi":"10.1214/23-ejs2106","DOIUrl":null,"url":null,"abstract":"We consider the deconvolution problem for densities supported on a $(d-1)$-dimensional sphere with unknown center and unknown radius, in the situation where the distribution of the noise is unknown and without any other observations. We propose estimators of the radius, of the center, and of the density of the signal on the sphere that are proved consistent without further information. The estimator of the radius is proved to have almost parametric convergence rate for any dimension $d$. When $d=2$, the estimator of the density is proved to achieve the same rate of convergence over Sobolev regularity classes of densities as when the noise distribution is known.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deconvolution of spherical data corrupted with unknown noise\",\"authors\":\"J'er'emie Capitao-Miniconi, E. Gassiat\",\"doi\":\"10.1214/23-ejs2106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the deconvolution problem for densities supported on a $(d-1)$-dimensional sphere with unknown center and unknown radius, in the situation where the distribution of the noise is unknown and without any other observations. We propose estimators of the radius, of the center, and of the density of the signal on the sphere that are proved consistent without further information. The estimator of the radius is proved to have almost parametric convergence rate for any dimension $d$. When $d=2$, the estimator of the density is proved to achieve the same rate of convergence over Sobolev regularity classes of densities as when the noise distribution is known.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2106\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了在未知中心和未知半径的$(d-1)$维球面上支持密度的反卷积问题,其中噪声的分布是未知的,并且没有任何其他观测值。我们提出了球面上信号的半径、中心和密度的估计,这些估计在没有进一步信息的情况下被证明是一致的。证明了该半径估计器对任意维数都具有几乎参数收敛速率。当d=2时,证明了密度估计器在Sobolev正则密度类上的收敛速度与噪声分布已知时相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deconvolution of spherical data corrupted with unknown noise
We consider the deconvolution problem for densities supported on a $(d-1)$-dimensional sphere with unknown center and unknown radius, in the situation where the distribution of the noise is unknown and without any other observations. We propose estimators of the radius, of the center, and of the density of the signal on the sphere that are proved consistent without further information. The estimator of the radius is proved to have almost parametric convergence rate for any dimension $d$. When $d=2$, the estimator of the density is proved to achieve the same rate of convergence over Sobolev regularity classes of densities as when the noise distribution is known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信