随机零和微分对策与后向随机微分方程

IF 0.3 Q4 STATISTICS & PROBABILITY
Khalid Oufdil
{"title":"随机零和微分对策与后向随机微分方程","authors":"Khalid Oufdil","doi":"10.1515/rose-2022-2097","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the stochastic zero-sum differential game in finite horizon in a general case. We first prove that the BSDE associated with a specific generator (the Hamiltonian function for the game) has a unique solution. Then we characterize the value function as that solution to prove the existence of a saddle point for the game. Finally, in the Markovian framework, we show that the value function is the unique viscosity solution for the related partial differential equation.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"31 1","pages":"65 - 86"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic zero-sum differential games and backward stochastic differential equations\",\"authors\":\"Khalid Oufdil\",\"doi\":\"10.1515/rose-2022-2097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the stochastic zero-sum differential game in finite horizon in a general case. We first prove that the BSDE associated with a specific generator (the Hamiltonian function for the game) has a unique solution. Then we characterize the value function as that solution to prove the existence of a saddle point for the game. Finally, in the Markovian framework, we show that the value function is the unique viscosity solution for the related partial differential equation.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"31 1\",\"pages\":\"65 - 86\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文在一个一般情况下研究有限域中的随机零和微分对策。我们首先证明了与特定生成器(博弈的哈密顿函数)相关的BSDE具有唯一的解。然后我们将值函数刻画为证明对策鞍点存在的解。最后,在马尔可夫框架下,我们证明了值函数是相关偏微分方程的唯一粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic zero-sum differential games and backward stochastic differential equations
Abstract In this paper, we study the stochastic zero-sum differential game in finite horizon in a general case. We first prove that the BSDE associated with a specific generator (the Hamiltonian function for the game) has a unique solution. Then we characterize the value function as that solution to prove the existence of a saddle point for the game. Finally, in the Markovian framework, we show that the value function is the unique viscosity solution for the related partial differential equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信