Saman Shojae Chaeikar, A. Ahmadi, Sasan Karamizadeh, Nakisa Shoja Chaeikar
{"title":"一个智能加密密钥管理框架","authors":"Saman Shojae Chaeikar, A. Ahmadi, Sasan Karamizadeh, Nakisa Shoja Chaeikar","doi":"10.1515/comp-2020-0167","DOIUrl":null,"url":null,"abstract":"Abstract For a secure data transmission in symmetric cryptography, data are encrypted and decrypted using an identical key. The process of creating, distributing, storing, deploying, and finally revoking the symmetric keys is called key management. Many key management schemes are devised that each one is suitable for a specific range of applications. However, these schemes have some common drawbacks like the hardness of key generation and distribution, key storage, attacks, and traffic load. In this article, a key management framework is proposed, which is attack resistant and transforms the current customary key management workflow to enhance security and reduce weaknesses. The main features of the proposed framework are eliminating key storage, smart attack resistant feature, reducing multiple-times key distribution to just one-time interpreter distribution, and having short key intervals – minutely, hourly, and daily. Moreover, the key revocation process happens automatically and with no revocation call.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SIKM – a smart cryptographic key management framework\",\"authors\":\"Saman Shojae Chaeikar, A. Ahmadi, Sasan Karamizadeh, Nakisa Shoja Chaeikar\",\"doi\":\"10.1515/comp-2020-0167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a secure data transmission in symmetric cryptography, data are encrypted and decrypted using an identical key. The process of creating, distributing, storing, deploying, and finally revoking the symmetric keys is called key management. Many key management schemes are devised that each one is suitable for a specific range of applications. However, these schemes have some common drawbacks like the hardness of key generation and distribution, key storage, attacks, and traffic load. In this article, a key management framework is proposed, which is attack resistant and transforms the current customary key management workflow to enhance security and reduce weaknesses. The main features of the proposed framework are eliminating key storage, smart attack resistant feature, reducing multiple-times key distribution to just one-time interpreter distribution, and having short key intervals – minutely, hourly, and daily. Moreover, the key revocation process happens automatically and with no revocation call.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2020-0167\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
SIKM – a smart cryptographic key management framework
Abstract For a secure data transmission in symmetric cryptography, data are encrypted and decrypted using an identical key. The process of creating, distributing, storing, deploying, and finally revoking the symmetric keys is called key management. Many key management schemes are devised that each one is suitable for a specific range of applications. However, these schemes have some common drawbacks like the hardness of key generation and distribution, key storage, attacks, and traffic load. In this article, a key management framework is proposed, which is attack resistant and transforms the current customary key management workflow to enhance security and reduce weaknesses. The main features of the proposed framework are eliminating key storage, smart attack resistant feature, reducing multiple-times key distribution to just one-time interpreter distribution, and having short key intervals – minutely, hourly, and daily. Moreover, the key revocation process happens automatically and with no revocation call.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.